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Abstract

After having recalled the basic properties of the Wang Chang–Uhlenbeck equations, we describe a class of relaxation

schemes to solve the multispecies Euler system closed with a non-classical state equation, system which is the fluid limit

of these kinetic equations. Then, we show how to couple the resolution of the Wang Chang–Uhlenbeck equations with

the resolution of this Euler system by using a particular relaxation scheme – namely, a kinetic scheme – which allows to

define a natural boundary condition at the kinetic–fluid interface and by using a Marshak condition to take into ac-

count the effect of the Knudsen layer in the fluid domain through an asymptotic matching. Finally, we show appli-

cations in the field of the Atomic Vapor Laser Isotopic Separation (AVLIS).
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1. Introduction

The aim of the Atomic Vapor Laser Isotopic Separation (AVLIS; SILVA in french) is to separate

uranium-235 from uranium-238 to obtain the fuel for nuclear plants (cf. [1]). Indeed, the natural uranium-

235 isotopic abundance is of about 0.7% and, to obtain the fissile fuel, we need to increase this abundance

to about 4%. From this point of view, the AVLIS process vaporizes uranium by using an intense electronic
beam which heats an uranium liquid source up to 3000 K (the uranium output is of some kilograms per

hour). Then, the uranium vapor is irradiated by a laser beam which ionizes the uranium-235 (and, ideally,

not the uranium-238) further collected as a liquid on collectors which are negative electrodes, see Fig. 1.

Moreover, to diminish the liquefaction temperature of the uranium on the electrodes (through the eutectic

effect), iron is added in the uranium source.
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Fig. 1. Vacuum chamber of the evaporation AVLIS process.
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To describe the stationary uranium–iron gas mixture expansion, we use the Wang Chang–Uhlenbeck

equations (cf. [2,3]) – also named Wang Chang–Uhlenbeck-de Boer (WCUB) equations or semi-classical
multispecies Boltzmann equations – for two reasons:

• the first reason comes from the fact that the uranium–iron gas mixture is almost rarefied, which induces

that the expansion has to be described with a kinetic formalism of the Boltzmann type;

• the second reason is due to the fact that the high temperature of the gas mixture induces quantified energy

transfers between the electronic metastable energy levels of uranium and iron atoms: that is why we have

to use also a semi-classical formalism.

Some papers have already focuss on the simulation of these Wang Chang–Uhlenbeck equations for

AVLIS applications, see [5–8].
An other important feature of the AVLIS expansion is that near the source of uranium–iron, it exists a

tiny area where the vapor is very dense – thus, the mixture is almost at the thermodynamic equilibrium in

this area – which makes the CPU time and the computer memory used to discretize the Wang Chang–

Uhlenbeck equations dramatically increase. To diminish the CPU time and the required computer memory,

we discretize the fluid limit of the Wang Chang–Uhlenbeck equations in the dense area where the gas

mixture is at the thermodynamic equilibrium – i.e., in the fluid area – limit which is the multispecies Euler

system closed with a non-classical state equation. Of course, in the remaining part of the physical domain –

i.e., in the rarefied or kinetic area – we solve the Wang Chang–Uhlenbeck equations. In other words, we
have to solve a domain decomposition problem which is named here kinetic–fluid coupling.

Moreover, between the uranium–iron source and the fluid area, the gas mixture is not at the thermo-

dynamic equilibrium although it is very dense: this very tiny area is called Knudsen layer. To optimize the

gain in CPU time and in computer memory, we would like to asymptotically match the fluid area where the

Euler system is solved with the uranium–iron source.

Thus, the aim of this paper is to expose the kinetic–fluid coupling technique and the asymptotic

matching technique designed for the evaporation AVLIS process.

Let us note that the techniques and results presented in this paper can be extended to other strong

evaporation problems as for example for the description of the gas expansion in the coma of a comet

produced by sun radiations (cf. [9]) or for the description of a volcanic jet when the atmosphere of the
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planet is rarefied as on the Jupiter�s moon Io (cf. [10]). Besides, the authors of the paper [10] propose to

divide the physical domain in several subdomains and to use a particular time step in each subdomain to

overcome the difficulty of having a dense area and a rarefied area in the resolution of the kinetic model.

The technique chosen to obtain a good boundary condition between the kinetic and fluid domains ex-

tends to the semi-classical multispecies case the technique already proposed in [11] for classical aerody-

namics problems (see also [12] and the references herein). This technique uses a kinetic scheme (cf. [14]) in

the fluid domain to discretize the Euler system: this finite volume scheme allows to define a natural

boundary condition at the kinetic–fluid interface with no overlapping between the kinetic and the fluid
domains, this boundary condition making conservative the kinetic–fluid coupling algorithm. Moreover,

this kinetic scheme is a relaxation scheme (cf. [13]) which allows to obtain an entropic result for the res-

olution of the multispecies Euler system (cf. [19,20]).

The plan of this paper is the following: in Section 2, we recall the basic properties of the Wang Chang–

Uhlenbeck equations (this section summarizes the paper [17]). In Section 3, we recall the energy relaxation

and the kinetic schemes introduced in [13,14], and we extend these notions to the multispecies case. In

Section 4, we describe the kinetic–fluid coupling algorithm, the boundary condition at the kinetic–fluid

interface and the boundary condition – which is a Marshak condition – designed for the asymptotic
matching of the fluid area with the uranium–iron source. At last, in Section 5, we present numerical results

which show that the proposed kinetic–fluid coupling algorithm coupled with the asymptotic matching gives

very good results.
2. The Wang Chang–Uhlenbeck equations and its fluid limit

In this section, we recall the system constituted with the Wang Chang–Uhlenbeck equations (cf. [2,3]) –
which are semi-classical multispecies Boltzmann equations – and the fluid limit of these kinetic equations

which is the hyperbolic multispecies Euler system closed with a non-classical state equation. This section

summarizes the results written in [17].

In this paper, we use the following notations and definitions:

• k is the subscript of the kth species;

• k is the number of species in the gas mixture;

• �ki 2 Rþ is the value of the ith quantified energy level of the species k;
• gki 2 N is the degenerescency of the ith quantified energy level of the species k. The degenerescencies gki

are integers which define the dimension of the subspace associated to the eigenvalues �ki of the quantic
Hamiltonian operator of the Schr€oodinger equation, Hamiltonian describing the quantified electronic en-
ergy transitions in an atom of the species k;

• f k
i ðt; x; vÞ 2 Rþ is the distribution function of the species k at the ith quantified energy level;

• mk is the atomic mass of the species k.
The variable t 2 Rþ is the time, x 2 R3 and v 2 R3 are, respectively, the position in the usual space and

the microscopic velocity. Let us now define the macroscopic density qk, the macroscopic velocity uk and the
macroscopic total energy Ek of the species k with

qk ¼
X
i

Z
R3

mkf k
i ðvÞdv;

qkuk ¼
X
i

Z
R3

mkvf k
i ðvÞdv;

qkEk ¼
X
i

Z
R3

mk
1

2
v2

�
þ �ki

�
f k
i vð Þdv

ð1Þ
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and let us define the density q, the velocity u and the total energy E of the gas mixture, and the mass fraction

Yk of the species k with

q ¼
X
k

qk �
1

s
;

qu ¼
X
k

qkuk;

qE ¼
X
k

qkEk � q
u2

2

�
þ e

�
;

Yk ¼
qk

q
2 ½0; 1� we see that

X
k

Yk

 
¼ 1

!
:

ð2Þ

The quantities s and e are, respectively, the specific volume and the specific internal energy of the gas

mixture.

2.1. The Wang Chang–Uhlenbeck equations

Let us consider a multispecies gas mixture whose distribution functions f k
i ðt; x; vÞ are solution of the

Wang Chang–Uhlenbeck equations (cf. [2,3])

otf k
i þ v 	 rxf k

i ¼ Qk
i ðff k�

j gj;k� Þ; ð3Þ

where

Qk
i ¼

X
j;h;l;k�

Qk;k�
i;j!h;l: ð4Þ

The operator Qk;k�
i;j!h;l is a collision operator describing a collision of a particle of the species k at the energy

level i with a particle k� at the energy level j, collision giving a particle of the species k at the energy level h
and a particle k� at the energy level l. The collision operator Qk;k�

i;j!h;l is given by

Qk;k�
i;j!h;l ¼

Z
Dk;k�
i;j!h;lðvÞ

f k
h ðv0Þf

k�
l ðv0�Þ

gki g
k�
j

gkhg
k�
l

"
� f k

i ðvÞf k�
j ðv�Þ

#
Bk;k�

i;j!h;lðv; v�;XÞdv� dX: ð5Þ

The positive function Bk;k�
i;j!h;lðv; v�;XÞ is the collision kernel and will be defined below and X is a vector of

the unit sphere S2. The couple of velocities ðv; v�Þ and ðv0; v0�Þ are, respectively, the pre-collision and the

post-collision velocities; they are related through

v0 ¼ vg þ X

ffiffiffi
2

p
lkk�

mk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
jv� v�j2 þ D�k;k�i;j!h;l

r
;

v0� ¼ vg � X

ffiffiffi
2

p
lkk�

mk�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
jv� v�j2 þ D�k;k�i;j!h;l

r
;

vg �
mkvþ mk�v�
mk þ mk�

;

ð6Þ

where

D�k;k�i;j!h;l ¼
mk

lkk�

�ki
�

� �kh
�
þ mk�

lkk�

ð�k�j � �k�l Þ ð7Þ
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with the reduced mass lkk� ¼ mkmk�=ðmk þ mk� Þ. Thus, the integration set Dk;k�
i;j!h;lðvÞ in (5) is defined by

Dk;k�
i;j!h;lðvÞ ¼ S2 � v� 2 R3 such that 1

2
jv

n
� v�j2 þ D�k;k�i;j!h;l P 0

o
:

The relations (6) are equivalent to the kinematic relations of a microscopic inelastic collision that is to say

to the relations:

mkvþ mk�v� ¼ mkv0 þ mk�v
0
�; ð8aÞ
mk
v2

2
þ mk�

k
i þ mk�

v2�
2
þ mk��

k�
j ¼ mk

v0
2

2
þ mk�

k
h þ mk�

v02�
2
þ mk��

k�
l : ð8bÞ

The relation (8a) supposes that the two particles which collide together define an isolated system; the re-

lation (8b) characterizes the conservation of the total microscopic energy before and after the collision, this

microscopic energy being the sum of a classical part – i.e., mk
v2

2
– and of a non-classical or quantic part –

i.e., mk�
k
i : that is why we also name semi-classical Boltzmann operator the Wang Chang–Uhlenbeck operator

(5).

The collision kernel Bk;k�
i;j!h;lðv; v�;XÞ is defined by

Bk;k�
i;j!h;lðv; v�;XÞ ¼ jv� v�j 	 rk;k�

i;j!h;lðv; v�;XÞ;

where rk;k�
i;j!h;lðv; v�;XÞ is the microscopic cross-section of the collision ðv; iÞ; ðv�; jÞ ! ðv0; hÞ; ðv0�; lÞ.

The cross-section rk;k�
i;j!h;l must be related to rk;k�

h;l!i;j through

gki g
k�
j rk;k�

i;j!h;lðv; v�;XÞ 	 jv� v�jdvdv� dX ¼ gkhg
k�
l rk;k�

h;l!i;jðv0; v0�;X0Þ 	 jv0 � v0�jdv0 dv0� dX0; ð9Þ

which is derived from the quantic Fermi�s golden rule (for classical collisions, the relation which is

equivalent to (9) is derived from the Liouville�s theorem).

A particular class of cross-sections model verifying (9) is the Anderson�s one proposed in [5]. This model
is defined by

rk;k�
i;j!h;lðv; v�;XÞ ¼ rk;k�

0 	 pk;k�i;j!h;lðv; v�Þ ð10Þ

with

pk;k�i;j!h;lðv; v�Þ ¼
gkhg

k�
l 	 1

2
jv� v�j2 þ D�k;k�i;j!h;l

� �
P

�m;n g
k
mg

k�
n 	 1

2
jv� v�j2 þ D�k;k�i;j!m;n

� � ; ð11Þ

rk;k�
0 ¼ rk�;k

0 being a strictly positive constant. The notation �m; n in (11) means that m and n are chosen in

the sum when 1
2
jv� v�j2 þ D�k;k�i;j!m;n is positive (we recall that D�k;k�i;j!h;l is defined by (7)).

Here, pk;k�i;j!h;lðv; v�Þ 2 ½0; 1� – which verifies
P

h;l p
k;k�
i;j!h;lðv; v�Þ ¼ 1 – defines the (conditional) probability

transition from a given quantic electronic metastable state ði; jÞ to the quantic electronic metastable state

ðh; lÞ for the species k and k� knowing the velocities v and v�.
Let us remark that when we decide to ‘‘forget’’ the existence of quantic electronic metastable states in the

atoms, it means that we impose D�k;k�i;j!h;l ¼ 0 and gki ¼ gkh for each ði; j; h; l; k; k�Þ (each electronic state is

supposed to be indiscernable from an other electronic state in that case). And, it is easy to prove that

f k ¼
P

i f
k
i is solution of the classical multispecies Boltzmann equations associated to the hard sphere

model whose the constant cross-sections are equal to rk;k�
0 .

This remark shows that the Anderson�s model is interesting when it is possible to consider the atoms

globally as hard spheres because it needs only to have an estimation of the cross-section rk;k�
0 to define
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rk;k�
i;j!h;lðv; v�;XÞ (the complicated electronic structure of atoms with high atomic number makes very difficult

to have a theoretical or experimental evaluation of each rk;k�
i;j!h;lðv; v�;XÞ). In that situation, we can define

rk;k�
0 with

rk;k�
0 ¼ p 	 ðrk þ rk� Þ

2
; ð12Þ

where rk is the radius of an atom of the species k considered as a hard sphere. For AVLIS applications,

experimental results (cf. [4]) and ab initio simulations show that an atom of uranium can be considered as a

hard sphere with radius equal to 2.43 �AA; similarly, an atom of iron can be considered as a hard sphere with

radius equal to 1.53 �AA.
The Anderson�s model was experimentally justified in [7] and is used in Monte-Carlo simulations for

AVLIS applications (see [5,6,8]): in the numerical results of Section 5, we will used this cross-sections

model.

2.2. Convergence toward a Maxwellian equilibrium and fluid limit

In this section, we describe without proof the basic properties of the Wang Chang–Uhlenbeck equations

(3). The proof are written in [17].

2.2.1. Convergence toward a Maxwellian equilibrium

We have the following result:

Lemma 2.1. Let us suppose that the cross-sections rk;k�
i;j!h;lðv; v�;XÞ verifies (9). Then:

8ði; kÞ : Qk
i ¼ 0 () 9ðfYk > 0gk; q > 0; u; T > 0Þ such that 8ði; kÞ : f k

i ðvÞ ¼Mk
i ðvÞ;

where Mk
i ðvÞ is the Maxwellian defined by

Mk
i vð Þ ¼ Yk

mk
	 q

2p T
mk

� �3=2 	 gki
Zk Tð Þ 	 exp

"
� mk

1
2
v� uð Þ2 þ �ki

T

#
; ð13Þ

ZkðT Þ ¼
P

i g
k
i expð�

mk�
k
i

T Þ being the partition function of the species k.

And by using the previous lemma with the classical H-theorem, we obtain:

Lemma 2.2. Let us suppose that the cross-sections rk;k�
i;j!h;lðv; v�;XÞ verifies (9) and that f k

i ðt; vÞ is solution of the
spatially homogeneous Wang Chang–Uhlenbeck equations (3) which means that

otf k
i ðt; vÞ ¼ Qk

i ðff k�
j gj;k� Þ:

Then, we have

8ði; kÞ : lim
t!þ1

kf k
i �Mk

i kL1 ¼ 0:
2.2.2. Fluid limit

Let us now define the internal energy

E Y1; . . . ; Yk�1; T
� �

¼ E � 1
2
u2 ð14Þ
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with

E Y1; . . . ; Yk�1; T
� �

¼
X
k

YkEkðT Þ; ð15aÞ
EkðT Þ ¼ Ecl
k ðT Þ þ Encl

k Tð Þ; ð15bÞ
Ecl
k ðT Þ ¼

3

2
	 T
mk

; ð15cÞ
Encl
k Tð Þ ¼

P
i g

k
i �

k
i exp � ½mk�

k
i =T �

� �
Zk Tð Þ ; ð15dÞ

where ZkðT Þ ¼
P

i g
k
i expð�½mk�

k
i =T �Þ is the partition function of the species k. The quantity T is the

temperature of the mixture and fYkgk defines the mass fractions of the mixture. The energy Ek is the internal

energy of the species k; Ecl
k and Encl

k are, respectively, the classical and the non-classical part of the internal

energy Ek of the species k.
By using Lemma 2.1, we can formally derive the fluid limit of the Wang Chang–Uhlenbeck equations:

Property 2.1 (Fluid limit). Let us suppose that the cross-sections rk;k�
i;j!h;lðv; v�;XÞ verify (9) and the property

9k > 0=8ðv; v�;X; i; j; h; l; k; k�Þ : rk;k�
i;j!h;lðv; v�;XÞ ’

1

k
ð16Þ

and let us suppose that f k
i ðt; x; vÞ – which is now noted f k

i;kðt; x; vÞ – is solution of the Wang Chang–Uhlenbeck
equations (3). Moreover, let us define ðfYk;kgk; qk; uk;EkÞ with the relations (1) and (2) and let us suppose that

9 fYkgk; q; u;E
� �

= lim
k!0

fYk;kgk; qk; uk;Ek

� �
¼ fYkgk; q; u;E
� �

:

Then, we formally have that

lim
k!0

f k
i;k ¼Mk

i ð17Þ

and that ðfYkgk; q; u;EÞ is solution of the hyperbolic multispecies Euler system

8k : otðYkqÞ þ rx 	 ðYkquÞ ¼ 0;

otðquÞ þ rx 	 ðqu� uþ P1Þ ¼ 0;

otðqEÞ þ rx 	 ½ðqE þ PÞu� ¼ 0

ð18Þ

with E ¼ 1
2
u2 þ e, system which is closed with the equations of state

e ¼ E Y1; . . . ; Yk�1; T
� �

ðcf : ð15ÞÞ;

sP ¼ T
X
k

Yk
mk

:
ð19Þ

Moreover, the system (18) and (19) admits the specific entropy sðY1; . . . ; Yk�1; s; eÞ defined by

s Y1; . . . ; Yk�1; s; e
� �

¼
X
k

Yksk Yk; s; Tð Þ; ð20aÞ
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sk Yk; s; Tð Þ ¼ � 1

mk
log s

�
þ 3

2
log

T
mk

� �
þ log ZkðT Þð Þ þ enclk ðT Þ

T=mk
� log

Yk
mk

� ��
; ð20bÞ

where the temperature T is solution of EðY1; . . . ; Yk�1; T Þ ¼ e with e ¼ E � 1
2
u2 (s � 1

q is the specific volume),
entropy which is associated to the entropy flux qu 	 s and which is a strictly convex function of the variables s
and e.

The system (18) and (19) is the multispecies Euler system closed with a non-classical state equation, and
defines the fluid limit of the Wang Chang–Uhlenbeck equations.

The property (16) is important: it supposes that there is only one microscopic time scale; if it was not

the case, there would be different relaxation time scales and the fluid limit could be more complicated (in

(16), k is proportional to the mean collision time and to the mean free path of the gas mixture). Let us note

that the Anderson�s model (10) and (11) verifies the property (16) as soon as it exists r0 > 0 such that

Oðrk;k�
0 Þ ¼ r0 for any ðk; k�Þ, which is the case in AVLIS applications: indeed, the radius of uranium and

iron atoms are of the same order (they are, respectively, equal to 2.43 and 1.53 �AA); then, the relation (12)

allows to conclude.
Of course, the proof of Property 2.1 is formal and an exact proof is still an open problem. Let us just

remark that from a theoretical point of view, we should precise in Property 2.1 the physical domain D with

the boundary condition on oD where the Wang Chang–Uhlenbeck equations (3) are solved. Indeed, the

convergence result (17) could be false near oD where it could appear kinetic boundary layers (the Knudsen

layer is a good example, see Section 4.3). Thus, the result of Property 2.1 has to be seen as a result which is

‘‘almost true’’ in D.

Let us note that we can write for each species k

sk Yk; s; Tð Þ ¼ sclk ðsk; T Þ þ snclk ðT Þ ð21Þ

by defining the partial entropies sclk and snclk , respectively, associated to the classical part eclk ¼ Ecl
k ðTkÞ and to

the non-classical part enclk ¼ Encl
k ðTkÞ of the internal energy Ek of the species k (cf. (15b)–(15d)). These partial

entropies are given by

sclk ðsk; TkÞ ¼ � 1

mk
logðmkskÞ
�

þ 3

2
log

Tk
mk

� ��
ð22Þ

(knowing that Yksk ¼ s) and by

snclk ðTkÞ ¼ � 1

mk
logðZkðTkÞÞ
�

þ enclk ðTkÞ
Tk=mk

�
: ð23Þ

Moreover, the entropy s verifies the second thermodynamic principle

�T ds ¼ dEþ P ds

when 8k : dYk ¼ 0.

Finally, let us remark that (19) is equivalent to
E Y1; . . . ; Yk�1; T1; . . . ; Tk
� �

¼
X
k

YkEk Tkð Þ
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with EkðTkÞ given by (15b)–(15d) and with

8ðk; lÞ : Tk ¼ Tl ðisothermal lawÞ;
P ¼

X
k

Pk ðDalton lawÞ;

8k : Yksk ¼ s ðmixture lawÞ;

8k : skPk ¼
Tk
mk

ðequations of stateÞ:

ð24Þ
3. Relaxation schemes for the multispecies Euler system

In this section, we propose a class of entropic schemes for the previous hyperbolic multispecies Euler
system (18)

8k : otðYkqÞ þ rx 	 ðYkquÞ ¼ 0;

otðquÞ þ rx 	 ðqu� uþ P1Þ ¼ 0;

otðqEÞ þ rx 	 ½ðqE þ PÞu� ¼ 0

ð25Þ

(E ¼ 1
2
u2 þ e) closed with the equations of state

e ¼ E Y1; . . . ; Yk�1; T
� �

;

P ¼ PðY1; . . . ; Yk�1; q; T Þ �
X
k

PkðYkq; T Þ;

Pkðqk; TkÞ ¼ qk
Tk
mk

;

ð26Þ

EðY1; . . . ; Yk�1; T Þ ¼
P

k YkEkðT Þ being defined by (15b)–(15d). This class of entropic schemes extends the

notion of energy relaxation schemes initially proposed in [13] and recalled below. Let us remark that this

entropic property is a strong stability property which induces that the scheme preserves the positivity of the
mass fractions, density, pressure and internal energy, and that the shocks, if they exist, are entropic;

nevertheless, this last property is of no use in AVLIS applications since there are no shocks but only ex-

pansions (see Section 5).

Let us recall that the system (25) and (26) is the fluid limit of the Wang Chang–Uhlenbeck equations (3),

is hyperbolic and admits the convex entropy sðY1; . . . ; Yk; s; eÞ given by

s Y1; . . . ; Yk�1; s; e
� �

¼
X
k

Yksk Yk; s; Tð Þ; ð27aÞ
skðYk; s; T Þ ¼ � 1

mk
log s

�
þ 3

2
log

T
mk

� �
þ log ZkðT Þð Þ þ enclk ðT Þ

T=mk
� log

Yk
mk

� ��
ð27bÞ

and associated to the entropy flux qu 	 s, see Property 2.1.

In this paper, we impose that the equations of state are given by (26) since one of the aims of this study is

to couple the Wang Chang–Uhlenbeck equations (3) with its fluid limit. Moreover, to simplify the results
and notations, we suppose now that the number of species is equal to two and we do not describe in detail

all the properties and proof. Nevertheless, we generalize and we precise in [19] (see also [20]) all the

properties described below for any number of species and for any equations of state admitting a ther-

modynamic entropy.



248 S. Dellacherie / Journal of Computational Physics 189 (2003) 239–276
After, we will derive a particular class of relaxation schemes for the resolution of the multispecies Euler

system (25) and (26) – namely the kinetic schemes – which will allow us to recover in a quite different way an

entropic result initially proposed in [16]. These kinetic schemes will be used in the following section to

couple the fluid domain with the kinetic domain.

In the following section, we briefly recall the basic properties of the energy relaxation schemes intro-

duced in [13] and the basic properties of the kinetic schemes introduced in [14].

3.1. The energy relaxation schemes and the kinetic schemes

3.1.1. The energy relaxation schemes

The aim of this class of schemes proposed in [13] is to describe a general way to obtain entropic schemes

for the resolution of the classical Euler system

otqþrx 	 quð Þ ¼ 0;

ot quð Þ þ rx 	 qu
�

� uþ P1
�
¼ 0;

ot qEð Þ þ rx 	 qEð½ þ P Þu� ¼ 0

ð28Þ

for any state equations eðs; P Þ associated to a thermodynamic entropy by introducing relaxation terms (we

recall that s � 1=q).
For that purpose, let us choose a state equation eaðs; PaÞ more simple than the original state equation

eðs; P Þ – for example, as the perfect gas equation of state – and let us define the energy relaxed system

otqþrx 	 quð Þ ¼ 0; ð29aÞ
ot quð Þ þ rx 	 qu
�

� uþ Pa1
�
¼ 0; ð29bÞ
ot qEað Þ þ rx 	 qEað½ þ PaÞu� ¼
1

k
½eb �Fðs; eaÞ�; ð29cÞ
ot qebð Þ þ rx 	 ðquebÞ ¼ � 1

k
½eb �Fðs; eaÞ� ð29dÞ

with Ea � u2

2
þ ea and where the energy Fðs; eaÞ is such that

eaðs; P Þ þF½s; eaðs; P Þ� ¼ eðs; P Þ ð30Þ

(the function F exists and is unique as soon as we suppose that e and ea are such that oP e > 0 and

oPaea > 0). Let us define E � Ea þ eb. Then, the important characteristic of the system (29a)–(29d) is that it

formally converges to the system (28) when k goes to zero. In fact, it is possible to show that under some
constraints, in particular on the choice of the state equation eaðs; PaÞ, the formal first-order asymptotic

equilibrium system of the relaxed system (29a)–(29d) is given by

otqþrx 	 quð Þ ¼ 0;

ot quð Þ þ rx 	 qu
�

� uþ P1
�
¼ krxðlrx 	 uÞ;

ot qEð Þ þ rx 	 qEð½ þ P Þu� ¼ krx 	 ðlurx 	 uÞ

where the viscosity l is a positive function of the thermodynamic variables (see [13]). This property means

that to obtain a numerical schemes for (28), we can discretize (29a)–(29d) by making k go to zero. The



S. Dellacherie / Journal of Computational Physics 189 (2003) 239–276 249
scheme is based on a splitting between the hyperbolic terms and the relaxation terms (n is the time sub-

script):

Hyperbolic stage. From an initial condition ðqn; un;EnÞ and knowing ena, e
n
b and Pn

a (which is equal to Pn),

we solve on a spatial mesh and on a time step Dt the system

otqþrx 	 quð Þ ¼ 0; ð31aÞ
ot quð Þ þ rx 	 qu
�

� uþ Pa1
�
¼ 0; ð31bÞ
ot qEað Þ þ rx 	 qEað½ þ PaÞu� ¼ 0; ð31cÞ
ot qebð Þ þ rx 	 ðquebÞ ¼ 0: ð31dÞ

Then, we obtain ðqnþ1=2; unþ1=2;Enþ1=2
a ; enþ1=2b Þ in each spatial mesh.

Energy relaxation stage. To obtain ðqnþ1; unþ1;Enþ1Þ, we solve from the initial condition
ðqnþ1=2; unþ1=2;Enþ1=2

a ; enþ1=2b Þ in each spatial mesh the spatially homogeneous system

otq ¼ 0;

qotu ¼ 0;

qotEa ¼
1

k
½eb �Fðs; eaÞ�;

qoteb ¼ � 1

k
½eb �Fðs; eaÞ�

ð32Þ

with the same time step Dt and with k ! 0. It induces that

qnþ1 ¼ qnþ1=2;

unþ1 ¼ unþ1=2;

Enþ1 ¼ Enþ1=2
a þ enþ1=2b :

Afterwards, we deduce enþ1a and enþ1b such that Enþ1 � ðunþ1Þ2=2 ¼ enþ1a þ enþ1b and enþ1b ¼Fð1=qnþ1; enþ1a Þ.
And, due to the relation (30), we obtain that Pnþ1

a ¼ Pnþ1 (the equilibrium is indeed an isobare equilibrium).

An immediate property of the energy relaxation scheme is that, if we know a solver for the Euler system

(31a)–(31c) associated to the equation of state eaðs; PaÞ, it is easy to deduce a solver for the Euler system (28)

associated to the equation of state eðs; P Þ without doing new developments. Let us note that a natural
choice is to take eaðs; PaÞ ¼ sPa=ðca � 1Þ, where ca > 1.

At last, it is also possible to show that this energy relaxation scheme has entropic properties (cf. [13,18]).

The aim of this section is to obtain numerical schemes for the resolution of the multispecies Euler system

(25) and (26) with a similar relaxation technique and having similar entropic properties for the mixture

entropy (27a) and (27b).

3.1.2. The kinetic schemes for any state equation

In this section, we briefly show that the kinetic schemes introduced by Perthame in [14] for a mono-

species perfect gas (with c 2�1; 3�) can be assimilated to a particular energy relaxation scheme when they are
applied to any state equation: this remark was already written in [15].

To simplify the notation, we now suppose that the geometry is monodimensional Cartesian. The sub-
script i and n are, respectively, the space and time subscripts of the mesh fxig and of the time sequence ftng;
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Dxi � xiþ1=2 � xi�1=2 and Dt � tnþ1 � tn are, respectively, the space and time steps. The numerical scheme to

solve (28) closed with the equation of state eðs; P Þ is defined by the conservative scheme

qnþ1=2
i ¼ qn

i �
Dt
Dx
ðIn

iþ1=2 � In
i�1=2Þ;

ðquÞnþ1=2i ¼ ðquÞni �
Dt
Dx
ð}n

iþ1=2 � }n
i�1=2Þ;

ðqEÞnþ1=2i ¼ ðqEÞni �
Dt
Dx
ð@n

iþ1=2 � @n
i�1=2Þ:

ð33Þ

In this section, the atomic mass of the monospecies gas is noted m.
Kinetic schemes for a perfect gas with c ¼ 3. We now suppose that eðs; P Þ ¼ sP=ðc� 1Þ with c ¼ 3. The

derivation of the kinetic schemes for a perfect gas with c ¼ 3 is based on the following lemma (cf. [14] and in

[22, Lemma 7.3, p. 285]):

Lemma 3.1 (B. Perthame). Let us define the initial conditions qð0; xÞ, uð0; xÞ and Eð0; xÞ of the Euler system
(28) which are supposed to be regular and let us define the function vðvxÞP 0 such thatZ

R

ð1; v2xÞvðvxÞdvx ¼ ð1; 1Þ;

vð�vxÞ ¼ vðvxÞ:
ð34Þ

Let hðt; x; vxÞ be solution of the pure transport equation

othþ vxoxh ¼ 0;

hðt ¼ 0; x; vxÞ ¼Mðx; vxÞ;
ð35Þ

where

Mðx; vxÞ ¼
qð0; xÞ=mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P ð0; xÞ=qð0; xÞ
p v

vx � uð0; xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð0; xÞ=qð0; xÞ

p
 !

with P ð0; xÞ such that eðs; PÞ ¼ sP=2 (m is the atomic mass). Then, qðt; xÞ, uðt; xÞ and Eðt; xÞ defined by

qðt; xÞ ¼
Z
R

mhðt; x; vxÞdvx;

qðt; xÞuðt; xÞ ¼
Z
R

mvxhðt; x; vxÞdvx;

qðt; xÞEðt; xÞ ¼
Z
R

m
v2x
2
hðt; x; vxÞdvx

is an approximation in Dt2 of the solution of (28) when t < Dt (in 1D Cartesian geometry).

Thus, by using an upwind scheme to solve (35) and by taking vðvxÞ ¼ 1ffiffiffiffi
2p

p expð�v2x=2Þ, we obtain a first
order numerical scheme for the monospecies Euler system (28) closed with the equation of state

eðs; P Þ ¼ sP=2, the numerical fluxes being defined by

I

}
@

0
@

1
A

iþ1=2

¼
I

}
@

0
@

1
A

þ

iþ1=2

þ
I

}
@

0
@

1
A

�

iþ1=2

ð36Þ
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where the positive and negative half fluxes are given by

I

}
@

0
@

1
A

þ

iþ1=2

¼
Z
vx>0

mvx
1

vx
v2x

0
@

1
AMðqi; ui; PiÞðvxÞdvx ð37Þ

and by

I

}
@

0
@

1
A

�

iþ1=2

¼
Z
vx<0

mvx
1

vx
v2x

0
@

1
AMðqiþ1; uiþ1; Piþ1ÞðvxÞdvx; ð38Þ

Mðq; u; P ÞðvxÞ being the classical monodimensional Maxwellian

Mðq; u; P ÞðvxÞ ¼
q=mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pP=q

p exp

"
� ðvx � uÞ2

P=q

#
: ð39Þ

The important property of this scheme is that it is possible to prove that it is positive and entropic under

a classical CFL criterion (cf. [16]). The formulas giving the numerical fluxes I, } and @ are given in

Appendix A.

Kinetic schemes for a real gas. By using the technique of the energy relaxation scheme previously recalled,
it is easy to extend the kinetic schemes to any state equation. Indeed, let us define ea with

eaðs; P Þ ¼
sP
2

and let us note

ebðs; P Þ ¼ eðs; P Þ � eaðs; P Þ: ð40Þ

Let us now solve (31a)–(31c) with the kinetic scheme described before: then, the numerical fluxes ðI; };@aÞ
are given by (36)–(38), and Eq. (31d) is solved with the kinetic scheme

ðqebÞnþ1i ¼ ðqebÞni �
Dt
Dx
ð@n

b;iþ1=2 � @n
b;i�1=2Þ

with @n
b;iþ1=2 ¼ @n;þ

b;iþ1=2 þ @n;�
b;iþ1=2,

@n;þ
b;iþ1=2 � enb;i 	 I

n;þ
iþ1=2 and @n;�

b;iþ1=2 � enb;iþ1 	 I
n;�
iþ1=2:

By noting that (cf. Appendix A)

@þa;iþ1=2 ¼
Piui
4

G

 
�

ffiffiffi
3

2

r
Ma;i

!
þ Ea;i 	 Iþ

iþ1=2

and that

@�a;iþ1=2 ¼
Piþ1uiþ1

4
G

ffiffiffi
3

2

r
Ma;iþ1

 !
þ Ea;iþ1 	 I�

iþ1=2

(Ma � u=
ffiffiffiffiffiffiffiffiffiffiffi
3P=q

p
is the Mach number associated to eaðs; PaÞ ¼ sPa=2 and GðxÞ is defined in the Appendix

A), we easily find that the kinetic scheme obtained in that way can be written with (33), where the formulas

giving the numerical fluxes I, } and @ considered as functions of q, u, P and E are exactly the same as
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those obtained when the gas is supposed to be a perfect gas with c ¼ 3, formulas already given in Appendix

A.

Thus, the kinetic schemes allow us to obtain general formulas for any state equation to define the nu-

merical fluxes. Moreover, we could prove, as in the case of a perfect gas with c ¼ 3, that this kinetic scheme

is positive under a classical CFL condition for any state equation eðs; PÞ as soon as eaðs; P Þ is chosen such

that ebðs; P Þ > 0. We could also prove that when the equation of state is of the form

eðs; P Þ ¼ EclðT Þ þ EnclðT Þ, where EclðT Þ and EnclðT Þ are defined by (15c) and (15d) and where sP ¼ T=m, the
kinetic scheme is entropic for the entropy s defined by (27b) under a classical CFL criterion, see [16].

3.2. The relaxation schemes applied to the resolution of the multispecies Euler system

We now apply the previous ideas in the case of the multispecies Euler system (25) and (26). The results
proposed here are generalized in [20] (see also [19]) to other equations of state and to non-miscible fluid

mixtures.

The central idea is to artificially ‘‘separate’’ each species by supposing that each vector ðqk; qkuk; qkEkÞ of
the species k is solution of the monospecies Euler system

otqk þrx 	 qkukð Þ ¼ 0;

ot qkukð Þ þ rx 	 qkuk
�

� uk þ Pk1
�
¼ 0;

ot qkEkð Þ þ rx 	 qkEkð½ þ PkÞuk� ¼ 0

ð41Þ

closed with the equations of state

ek ¼ EkðTkÞ ðcf : ð15bÞÞ;

Pkðqk; T Þ ¼ qk
T
mk

:
ð42Þ

The variables qk, uk, Ek �
u2k
2
þ ek, Pk and Tk are, respectively, the density, the velocity, the total energy, the

pressure and the temperature of the species k. A corollary of Property 2.1 is that each system (41) and (42) is

hyperbolic and that

sk sk; ekð Þ ¼ sclk ðsk; TkÞ þ snclk ðTkÞ ð43Þ

with

sclk ðsk; TkÞ ¼ � 1

mk
logðmkskÞ
�

þ 3

2
log

Tk
mk

� ��
ð44Þ

and

snclk ðTkÞ ¼ � 1

mk
logðZkðTkÞÞ
"

þ enclk ðTkÞ
Tk
mk

#
ð45Þ

is a thermodynamic entropy associated to the entropy flux qkuk 	 sk. The partial entropies sclk and snclk are,

respectively, associated to the energies eclk ¼ Ecl
k ðTkÞ and enclk ¼ Encl

k ðTkÞ given by (15c) and (15d).

Since the fluid limit (25) and (26) of the Wang Chang–Uhlenbeck equations (3) imposes that the mixture

is an isothermal mixture (i.e., T1 ¼ T2), we couple the two systems (41) (k ¼ 1 and k ¼ 2) with a relaxation

term proportional to ðT2 � T1Þ to force the two systems to relax toward an isothermal equilibrium; in the

same way, we relax the systems (41) with a relaxation term proportional to ðu2 � u1Þ to force the two
systems to relax toward an isovelocity equilibrium.
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Indeed, we propose the following relaxed system

otq1 þrx 	 q1u1ð Þ ¼ 0; ð46aÞ
ot q1u1ð Þ þ rx 	 q1u1
�

� u1 þ P11
�
¼ 1

k
u2ð � u1Þ; ð46bÞ
ot q1E1ð Þ þ rx 	 q1E1ð½ þ P1Þu1� ¼
1

k
T2ð � T1Þ þ

1

k
Uinter u2ð � u1Þ; ð46cÞ
otq2 þrx 	 q2u2ð Þ ¼ 0; ð46a0 Þ
ot q2u2ð Þ þ rx 	 q2u2
�

� u2 þ P21
�
¼ 1

k
u1ð � u2Þ; ð46b0 Þ
ot q2E2ð Þ þ rx 	 q2E2ð½ þ P2Þu2� ¼
1

k
T1ð � T2Þ þ

1

k
Uinter u1ð � u2Þ; ð46c0 Þ

where

Uinter 2 min u1; u2ð Þ;max u1; u2ð Þ½ �:

We name interfacial velocity the velocity Uinter by analogy with the multiphasic Euler system (cf. [23]); k is a
strictly positive parameter (for example, k�1 is proportional to ðq1 þ q2Þm, where m is a strictly positive

frequency): we formally see that the relaxation terms force the temperatures and the velocities of each

species to relax to the same values, and that the more k is important, the less the system (46a)–(46c0)

converges to the isothermal–isovelocity equilibrium.

Let us note that the system (46a)–(46c0) is hyperbolic since the hydrodynamic transport for the species 1
and the hydrodynamic transport for the species 2 are coupled through the relaxation terms and not through

differential terms.

3.2.1. Asymptotic analysis of the relaxed system

Of course, in order to have a system (46a)–(46c0) well posed, it is important that the isothermal–isove-

locity equilibrium would be a stable equilibrium. We have the following result whose proof is presented in

[20]:

Theorem 3.1. The formal first-order asymptotic equilibrium system of the relaxed system (46a)–(46c0) is given
by the system

otðY1qÞ þ rx 	 ðY1quÞ ¼ rx 	 ðkJ1Þ;
otðY2qÞ þ rx 	 ðY2quÞ ¼ rx 	 ðkJ2Þ;

otðquÞ þ rx 	 ðqu� uþ P1Þ ¼ rxðklrx 	 uÞ;
otðqEÞ þ rx 	 ½ðqE þ PÞu� ¼ rx 	 ½kðh1J1 þ h2J2Þ� þ rx 	 ðklurx 	 uÞ

ð47Þ

closed with the state equation (26) and with

J1 ¼ �J2 ¼ qY1Y2ðY2rxP1 � Y1rxP2Þ;
hk ¼ ek þ Pk=ðYkqÞ
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and where the viscosity l is defined by
lðY1; q; T Þ ¼
Y 2
1 Y

2
2 q2T

Y1ðdE1ðT Þ=dT Þ þ Y2ðdE2ðT Þ=dT Þð Þ2
dE1ðT Þ=dT

m2

�
� dE2ðT Þ=dT

m1

�2

:

We see that the viscosity l is positive and will be equal to zero when:

• Y1 ¼ 0 or Y1 ¼ 1, i.e., when the mixture is pure. Let us remark that, in that case, we have also Jk ¼ 0;

• when m1dE1ðT Þ=dT ¼ m2dE2ðT Þ=dT : this is the case when the species 1 and 2 are identical that is to say
when the mixture is again pure.

Let us note that the fluxes Jk can be rewritten with

Jk ¼ D12ðP ;C1Þ rxCk

�
þ 1
�

� mk

m

�
Ck
rxP
P

�
; ð48Þ

where D12ðP ;C1Þ is a positive function and where Ck is the molar fraction of the species k in the mixture

defined by Ck ¼ Ykm=mk, m being equal to ðY1=m1 þ Y2=m2Þ�1. We recognize in (48) the Fick law and the

baro-diffusive effect which are classical diffusion processes.

This theorem shows that, near the equilibrium, the system (46a)–(46c0) is similar to a multispecies

Navier–Stokes system which formally converges to the multispecies Euler system (25) when k goes to

zero.

3.2.2. Definition of the relaxation scheme and entropic result

To obtain a numerical scheme for the multispecies Euler system (25) and (26), we discretize the system

(46a)–(46c0) by making k go to zero to force the isothermal–isovelocity equilibrium. The numerical resolution

of (46a)–(46c0) is based on a splitting between the hyperbolic terms and the relaxation terms (n is the time
subscript):

• Hyperbolic stage. From an initial condition ðY n
1 ; q

n; un;EnÞ and knowing Pn
1 , P

n
2 and T n, we solve on the

spatial mesh fxig and on a time step Dt the independent systems (41) for k ¼ 1 and k ¼ 2. Thus, we ob-

tain ðY nþ1=2
k ; qnþ1=2; unþ1=2k ;Enþ1=2

k Þ in each spatial mesh xi.
• Relaxation stage. To obtain ðY nþ1

1 ; qnþ1; unþ1;Enþ1Þ, we relax on the same time step Dt the system to the

isothermal–isovelocity equilibrium from the initial condition ðY nþ1=2
k ; qnþ1=2; unþ1=2k ;Enþ1=2

k Þ by solving in

each spatial mesh
otY1 ¼ 0;

otq ¼ 0;

Y1qotu1 ¼
1

k
u2ð � u1Þ;

Y1qotE1 ¼
1

k
T2ð � T1Þ þ

1

k
Uinter u2ð � u1Þ;

Y2qotu2 ¼
1

k
u1ð � u2Þ;

Y2qotE2 ¼
1

T1ð � T2Þ þ
1
Uinter u1ð � u2Þ
k k
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with k ! 0 (we recall that Y2 ¼ 1� Y1). Thus, we have

qnþ1 ¼ qnþ1=2
1 þ qnþ1=2

2 ;

Y nþ1
1 ¼ qnþ1=2

1 =qnþ1;

unþ1 ¼ Y nþ1=2
1 unþ1=21 þ Y nþ1=2

2 unþ1=22 ;

Enþ1 ¼ Y nþ1=2
1 Enþ1=2

1 þ Y nþ1=2
2 Enþ1=2

2 :

And the pressures Pnþ1
1 , Pnþ1

2 and the temperature T nþ1 are such that

Y nþ1
1 E1ðT nþ1Þ þ Y nþ1

2 E2ðT nþ1Þ ¼ Enþ1 � ðunþ1Þ2

2
;

Pnþ1
1 ¼ Y nþ1

1 qnþ1 T
nþ1

m1

;

Pnþ1
2 ¼ Y nþ1

2 qnþ1 T
nþ1

m2

(we easily verify that Enþ1 � ðunþ1Þ2
2

> 0 as soon as enþ1=21 > 0 and enþ1=22 > 0, and thus as soon as each hy-

perbolic stage is positive).

The main result of this section is the following:

Theorem 3.2. Let us suppose that each numerical scheme used to discretize each hyperbolic step (41) and (42)
is entropic. Thus, the relaxation scheme defined before and used to discretize the multispecies Euler system (25)

and (26) is entropic.

The proof is based on the fact that the entropy mixture sðY1; s; eÞ given by (27a) and (27b) is the solution
of a minimization problem similar to the one of the Gibbs theorem coming from the kinetic theory (cf.

[18,20]).

This result – which is very general in fact (cf. [20]) and not only true for the equations of state (26) –

shows that we do not have to construct new solvers to obtain an entropic scheme for the multispecies Euler
system (25) and (26) as soon as entropic solvers are known for each monospecies Euler system (41) and (42).

In the following section, we propose a particular class of these relaxation schemes – the kinetic schemes –
and, by using Theorem 3.2, we will recover an entropic result for the kinetic schemes applied to the

multispecies Euler system (25) and (26), result previously proposed in [16].

3.3. The kinetic schemes applied to the resolution of the multispecies Euler system

We define the (explicit) kinetic scheme for the hyperbolic step (41) and (42) with

qnþ1=2
k;i ¼ qn

k;i �
Dt
Dx
ðIn

k;iþ1=2 � In
k;i�1=2Þ; ð49aÞ
ðqkukÞ
nþ1=2
i ¼ ðqkukÞ

n
i �

Dt
Dx
ð}n

k;iþ1=2 � }n
k;i�1=2Þ; ð49bÞ
ðqkEkÞnþ1=2i ¼ ðqkEkÞni �
Dt
Dx
ð@n

k;iþ1=2 � @n
k;i�1=2Þ; ð49cÞ

where the numerical fluxes ðIk; }k;@kÞ are the kinetic fluxes defined in Appendix A. Then, by using

Theorem 3.2, we easily obtain the following proposition already obtained in [16] with another technique

(although we use one of the results proposed in [16], see the proof below):
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Proposition 3.1. Let us suppose that the equations of state are defined by (26). Then, the kinetic scheme
defined by

8k : ðYkqÞnþ1i ¼ ðYkqÞni �
Dt
Dx
ðIn

k;iþ1=2 � In
k;i�1=2Þ;

ðquÞnþ1i ¼ ðquÞni �
Dt
Dx
ð}n

iþ1=2 � }n
i�1=2Þ;

ðqEÞnþ1i ¼ ðqEÞni �
Dt
Dx
ð@n

iþ1=2 � @n
i�1=2Þ;

ð50Þ

where the numerical fluxes are given by

} ¼
X
k

}k;

@ ¼
X
k

@k

ð51Þ

is entropic under a classical CFL criterion for the specific entropy s defined by (27a) and (27b) and associated
to the entropy flux qu 	 s.

Proof of Proposition 3.1. We know that the monospecies kinetic scheme (49a)–(49c) is entropic under a

classical CFL criterion for the entropy sk given by (27b) (with s ¼ Yksk): this result is shown in [16]. Then,

we deduce the result by applying Theorem 3.2 and by summing each Eq. (49b) and each Eq. (49c) together

knowing that k ¼ 1; . . . ; k. �
4. Kinetic–fluid coupling and the Marshak condition for the multispecies Euler system

The aim of this section is to propose for the simulation of the gas mixture expansion of the AVLIS

process an algorithm of domain decomposition to couple the resolution of the Wang Chang–Uhlenbeck

equations (3) in the kinetic area and the resolution of the multispecies Euler system (25) and (26) in the fluid

area, the scheme used to discretize the Euler system being the kinetic scheme proposed in the previous

section.

Let us remark that the uranium–iron expansion is stationary: thus, the expansion has to be described by

the stationary solution of the Wang Chang–Uhlenbeck equations (3) and by the stationary solution of the

Euler system (25) and (26) in the kinetic and fluid areas.
This coupling technique was previously used in [11] to couple the classical monospecies Boltzmann

equation with the classical monospecies Euler system for aerodynamic problems. It uses half flux conditions

to define the boundary condition at the kinetic–fluid interface. These conditions come from a kinetic in-

terpretation of the Euler equations and give formulas for the numerical fluxes at the kinetic–fluid interface

similar to those obtained with the kinetic schemes presented in the previous section: that is why we will use

the kinetic schemes to solve the multispecies Euler system in the fluid domain although we could a priori use

any good scheme designed for the multispecies Euler system apart from the meshes which have a frontier

with the kinetic–fluid interface.
In this section, we use the following definitions and notations (see the Fig. 2):

• The physical domain D � R3 is constituted of the kinetic domain K � R3 – where the mean free path is

important – and of the fluid domain F � R3 – where the mean free path is tiny. We have D ¼K [F
and the kinetic–fluid interface I is defined by I ¼K \F. The kinetic–fluid coupling algorithm pro-

posed in this section supposed no overlapping between K and F: thus, I is a surface (or a line if

D � R2 and points if D � R).



Fig. 2. Structure of a plume created by evaporation.
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• The boundary condition for the kinetic domain K at the interface I is noted Cfluid!kineticðIÞ; con-
versely, for the fluid domain F, it is noted Ckinetic!fluidðIÞ. These boundary conditions will be defined

below.
• A mesh of the kinetic domain K having a frontier on the kinetic–fluid interface I is noted Xm; this fron-

tier is noted Imþ1=2 and the fluid mesh having also this interface on its frontier is noted Xmþ1. The dis-

tribution function f k
i in the mesh Xm is noted f k

i ðxm; vÞ.
• The uranium–iron emission surface is noted SU–Fe and the meshes having a frontier on SU–Fe are noted

Xqþ1, this frontier being noted SU–Fe;qþ1=2. Of course, we have SU–Fe;qþ1=2 � SU�Fe � oD.

We recall that i is the subscript of the ith quantified energy level of the species k, see the notations at the
beginning of Section 2.

Let us note that the feature of the gas expansion in the AVLIS process is completely similar to the
feature of the gas expansion in the coma of a comet (cf. [9]) and to the feature of the gas expansion of a

volcanic jet when the atmosphere of the planet is rarefied (cf. [10]): thus, all the techniques and results of

this section can be applied to the problems exposed in [9,10].

4.1. Algorithm of the kinetic–fluid coupling

The algorithm is the following (we will explicitly define the boundary conditions Cfluid!kineticðIÞ and
Ckinetic!fluidðIÞ in the following section):

Initialisation of the fluid domain F and of the boundary condition Cfluid!kineticðIÞ. We solve the pure

transport equations otf k
i þ v 	 rxf k

i ¼ 0 in the domain D to obtain the stationary solution without collisions

in D. Then, we initialize the fluid domain F which allows us to define the boundary condition

Cfluid!kineticðIÞ on the kinetic–fluid interface I. This stage does not take a lot of CPU time since we do not
take into account the Wang Chang–Uhlenbeck operators (4) and (5).

First stage: computation of the kinetic domain K. Knowing the boundary condition Cfluid!kineticðIÞ, we
solve the Wang Chang–Uhlenbeck equations (3) in the kinetic domainK. Then, we compute the boundary

condition Ckinetic!fluidðIÞ at the interface I for the fluid domain F after having done enough collisions to

obtain a stationary solution of the Wang Chang–Uhlenbeck equations in K.

Second stage: computation of the fluid domain F. Knowing the boundary condition Ckinetic!fluidðIÞ at the
kinetic–fluid interface I, we solve the multispecies Euler system (25) and (26) with the kinetic scheme (50)

and (51) in the fluid domain F. Then, we compute the new boundary condition Cfluid!kineticðIÞ at the in-
terface I for the kinetic domain K when we have reached a stationary solution of the Euler system in F.

Third stage: convergence of the algorithm? We stop the algorithm if the global level of convergence is

enough; if not, we come back to the first stage.
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Let us note that the existence of a proof of the convergence of this algorithm is an open problem, even

for simplified kinetic models. Nevertheless, the numerical results obtained in Section 5 seem to state that

there is convergence.

4.2. Boundary condition at the kinetic–fluid interface

Since we solve the fluid limit of the Wang Chang–Uhlenbeck equations (3) in the fluid domain F, the

kinetic–fluid interface I has to be placed in an area which is at the thermodynamic equilibrium which

means that the solution f k
i of the Wang Chang–Uhlenbeck equations in F without coupling has to be a

Maxwellian given by (13). Of course, since we do not know the solution of (3) in D, we have to choose a

priori the position of F in the domain D and, then, the position of the kinetic–fluid interface I. Never-

theless, for AVLIS aplications, the domain D is fixed and we only modify the uranium–iron emission
condition on SU–Fe (this emission condition will be defined in Sections 4.3 and 5.2) which does not change

to much the position of the fluid domain. Thus, for a given domainD, the position ofI can be chosen from

a first simulation without kinetic–fluid coupling. Of course, a best way would be to find a criterion which

would automatically estimate an a priori position of the kinetic–fluid interface I at the beginning of the

kinetic–fluid algorithm.

To simplify the notations, we suppose in this section that the expansion is monodimensional in the x-
direction: thus, the kinetic–fluid interfaceI is perpendicular to the x-direction and we only need to compute
the fluxes of the Euler system in the x-direction. Moreover, we write in this paper the boundary condition
only on the part of the interface I which verifies nx > 0, where n is the normal on I entering the fluid

domain F (see Fig. 2). The projection on the x-direction of the microscopic velocity v is noted vx
(v � ðvx; vy ; vzÞ 2 R3).

Of course, it is easy to extend the proposed boundary condition for any geometry and any shape of the

kinetic–fluid interface I (the numerical results in the following part are obtained for an axisymmetrical

geometry and for an interface being parallel or perpendicular to the radial axis, see Fig. 4).

4.2.1. Boundary condition Cfluid!kinetic(I) on Imþ1=2 for the Wang Chang–Uhlenbeck equations

After the second stage of the coupling algorithm, we know the stationary solution of the Euler system

(25) and (26) and, thus, we know the mass fractions Yk of each species k, the density q, the velocity u and the
temperature T of the gas mixture in each fluid frontier mesh Xmþ1 – see Fig. 2 – at the time tn ¼ þ1 (which

defines the last time step of the numerical resolution of the Euler system). Because of the kinetic inter-
pretation of the Euler system (25) and (26) (cf. Property 2.1), we now consider that the fluid domainF is an

uranium–iron emission source for the kinetic domain K through each interface Imþ1=2. Thus, since nx is
supposed to be positive, the boundary condition Cfluid!kineticðIÞ on Imþ1=2 for each species k are given by

f k
i ðxmþ1=2; vÞ �Mk

i ðtn ¼ þ1; xmþ1; vÞ if vx < 0; ð52Þ

where Mk
i is the Maxwellian defined by (13) that is to say by

Mk
i vð Þ ¼ Yk

mk
	 q

2pðT =mkÞð Þ
3
2

	 gki
Zk Tð Þ 	 exp

(
� mk

1
2
½ vx � uð Þ2 þ v2y þ v2z � þ �ki

T

)
; ð53Þ

with ðq; u; T Þ � ðq; u; T Þx¼xmþ1 (we recall that u 2 R in that section).

4.2.2. Boundary condition Ckinetic!fluid(I) on Imþ1=2 for the Euler system

After the first stage of the coupling algorithm, we know the kinetic solution f k
i ðxm; vÞ of (3) in each

kinetic frontier mesh Xm. Thus, we can evaluate the macroscopic fluxes of mass Iþ
k;mþ1=2 for each species k,

the macroscopic fluxes }þmþ1=2 of the mixture momentum and the macroscopic fluxes @þmþ1=2 of the mixture
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total energy which enter into the fluid mesh Xmþ1 through the interface Imþ1=2. They are defined by the

formulas (let us recall that we suppose that nx > 0)

Iþ
k;mþ1=2 ¼

X
i

Z Z Z
vx>0

mkvxf k
i ðxm; vÞdv;

}þmþ1=2 ¼
X
k;i

Z Z Z
vx>0

mkv2xf
k
i ðxm; vÞdv;

@þmþ1=2 ¼
X
k;i

Z Z Z
vx>0

mkvx
v2

2

�
þ �ki

�
f k
i ðxm; vÞdv:

ð54Þ

Conversely, we know the value of the macroscopic fluxes which leave the fluid domain F at any time tn of
the numerical resolution of the Euler system since the distribution f k

i ðtn; xmþ1; vÞ in the fluid mesh Xmþ1 is the

Maxwellian Mk
i ðtn; xmþ1; vÞ by hypothesis, Maxwellian given by (53). Then, using again the kinetic inter-

pretation of the multispecies Euler system (cf. Property 2.1), we deduce that the boundary condition

Ckinetic!fluidðIÞ on Imþ1=2 associated to the kinetic scheme (50) and (51) – or to another good scheme – can

be given by

Ik;mþ1=2 ¼ Iþ
k;mþ1=2 þ I�;n

k;mþ1=2;

}mþ1=2 ¼ }þmþ1=2 þ }�;nmþ1=2;

@mþ1=2 ¼ @þmþ1=2 þ @�;nmþ1=2;

ð55Þ

where the negative half fluxes I�;n
k;mþ1=2, }

�;n
mþ1=2 and @�;nmþ1=2 are defined by (54) by replacing vx > 0 and

f k
i ðxm; vÞ, respectively, with vx < 0 andMk

i ðtn; xmþ1; vÞ. We easily see that the formulas giving I�;n
k;mþ1=2, }

�;n
mþ1=2

and @�;nmþ1=2 are those giving the negative half fluxes of the kinetic schemes described in the previous section,

the formulas are given in Appendix A.
Let us note that the boundary conditions (54) and (55) correspond to a Marshak condition which will be

explicitly used in the following section to take into account the Knudsen layer effects in the numerical

resolution of the multispecies Euler system. Moreover, we can see that the boundary condition (52) coupled

with the boundary conditions (54) and (55) makes conservative the coupling algorithm proposed at Section

4.1.

Finally, let us recall that the Wang Chang–Uhlenbeck equations (3) are solved with a Monte-Carlo

technique (cf. [5–8]). Then, to reduce the statistical noise in the computation of the quantities (54), we

compute the half fluxes during each iteration of the Monte-Carlo algorithm of the first stage of the coupling
algorithm by updating the statistic average of (54) as soon as a particle crosses the interface Imþ1=2 to go

into the fluid domain F; afterwards, this particle is killed. Of course, if the numerical method to solve the

Wang Chang–Uhlenbeck equations is a deterministic method, the quantities (54) is computed at the end of

the first stage of the coupling algorithm.

4.3. Boundary condition in the Knudsen Layer for the Euler system

To obtain the gas expansion in the AVLIS process, an electronic beam heats the (liquid) surface

SU–Fe � oD (cf. Section 1 and Fig. 1). Afterwards, the uranium–iron gas mixture expands in the physical

domain D and condensates on oD. Due to the interaction of the sourceSU–Fe with this electronic beam, the

distribution of each species k on the liquid surface SU–Fe is given by distribution functions /k
i ðvÞ which are

physical data coming from experimental studies and modelization hypothesis (see Section 5.2): this means
that the distribution functions of the evaporated particles are defined by /k

i ðvÞ on SU–Fe, when v 	 n > 0,

where n is the normal on the source SU–Fe entering in D.
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Moreover, we suppose that near the source SU–Fe, the evaporation problem is monodimensional in the

direction orthogonal to the source SU–Fe, direction which is supposed to be x: thus, SU–Fe is located by

x ¼ 0 as on Fig. 2.
4.3.1. Existence of a Knudsen layer and asymptotic matching

Near the surface SU–Fe, the mean free path is very tiny. Nevertheless, the gas mixture is not at the

thermodynamic equilibrium because the distribution function f k
i ðt; x ¼ 0; vx > 0Þ � /k

i ðvÞ is imposed by the
boundary condition on the source SU–Fe which implies that f k

i ðt; x ¼ 0; vÞ 6¼Mk
i ðvÞ: the important conse-

quence is that the Euler system (25) and (26) is not valid near the surface SU–Fe (in other words, the formal

convergence (17) of Property 2.1 is not valid on SU–Fe). Nevertheless, because of the collisions, the gas

mixture recovers the thermodynamic equilibrium at a distance of some mean free paths from the surface

SU–Fe and the Euler system becomes valid: the area between the surface SU–Fe and the place where the gas
mixture recovers the thermodynamic equilibrium is named Knudsen layer, see Fig. 2.

Thus, we can summarize the expansion of the gas mixture in the AVLIS process with (see also the feature

of the gas expansion in the coma of a comet in [9]):

Evaporation from SU–Fe � oD! Knudsen layer! Fluid domain F! Kinetic domain K

i:e:; rarefied area! Condensation on oD:

To optimize the gain in CPU time and in required computer memory due to the kinetic–fluid coupling, we

would like to take into account the effects of the Knudsen layer without solving the Wang Chang–Uh-
lenbeck equations in this layer but by asymptotically matching the fluid domain F on the surface SU–Fe: it

can be done by using an ad hoc boundary condition on SU–Fe for the multispecies Euler system.

More precisely, when the fluid domain F is asymptotically matched with the source SU–Fe, the multi-

species Euler system (25) and (26) is solved in the mesh Xqþ1 although this mesh is inside the Knudsen layer

(let us recall that Xqþ1 is a mesh of the physical domain D centered on xqþ1 which has a frontier

SU–Fe;qþ1=2 �SU–Fe, see Fig. 2): then, to take into account the effect of the Knudsen layer in the mesh Xqþ1,

we have to find ad hoc values of the macroscopic fluxes Ik;qþ1=2, }qþ1=2 and @qþ1=2 on the interface

SU–Fe;qþ1=2 in the numerical scheme (50). It can be done by studying the half space problem which will help
us to define the Marshak condition.
4.3.2. The half space problem

To obtain this boundary condition, the best way is a priori to solve the monodimensional half space

problem which is also called Milne�s problem (a similar approach is proposed for semi-conductor problems

where it could also exist a Knudsen layer, see [12]). Here, we rescale the Knudsen layer by writing that x ¼ 0

corresponds to the uranium–iron evaporation sourceSU–Fe and that x ¼ þ1 corresponds to the exit of the

Knudsen layer, i.e., to the entry of the fluid domain F. The half space problem is the following:

Does it exist fYkgk, q, u and T which define the Maxwellians Mk
i ðvÞ given by (53) such that the problem

For all ði; kÞ :
v 	 rxf k

i ðx; vÞ ¼ Qk
i ;

f k
i ðx ¼ 0; vx > 0Þ � /k

i ðvÞ;
f k
i ðx ¼ þ1; vÞ �Mk

i ðvÞx¼þ1

8<
: ð56Þ

is well posed.

Let us suppose that (56) is well posed: then, it would be possible to define a boundary condition on x ¼ 0

for the multispecies Euler system (25) and (26) by imposing ðfYkgk; q; u; T Þx¼0 with the moments of

Mk
i ðvÞx¼þ1 given by the resolution of (56): this would correspond to the asymptotic matching of the fluid

domain F on the surface SU–Fe.
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In the case of a linearized classical monospecies Boltzmann operator, it is possible to obtain some

theoretical results on the existence of a solution of (56). This solution is parametrized by the Mach number

at x ¼ þ1 which has to be less than one (cf. [25]).

Some numerical experiments performed in [26] have proven the existence of a solution parametrized also

by the Mach number at x ¼ þ1 for a monospecies BGK operator and when the boundary condition

f ðx ¼ 0; vx > 0Þ � /ðvÞ is a classical centered MaxwellianMðvÞ, Mach number which has to be less or equal

than one.

For monospecies Boltzmann or BGK operators, a very simplified analytical approach is proposed in
[27,28] when the boundary condition at x ¼ 0 is a centered Maxwellian (the idea is to study (56) in the

classical monospecies case by supposing that 9b > 0 such that f ðx ¼ 0; vx < 0Þ ¼ bMðvÞx¼þ1 and by taking

the moments of (56)): the analytical formulas giving q, u and T at x ¼ þ1 are again parametrized by the

Mach number at x ¼ þ1 which is also supposed to be less than or equal to one from physical consider-

ations. The numerical results are very similar to those proposed in [26]. Let us note that these formulas are

obtained for any c 2�1; 3�; in [26], the results are obtained for a gas with c ¼ 5=3.
It is important to note that all these previous theoretical or numerical results can not be applied in our

case for three reasons:
• the Wang Chang–Uhlenbeck operators (3) are not classical monospecies Boltzmann operators or BGK

operators;

• in the case of a classical monospecies Boltzmann operator, the Mach number at x ¼ þ1 is a free param-

eter (which has to be subsonic). In some situation, it is possible to show that the exit of the Knudsen

layer has to be sonic: then, the exit of the Knudsen layer is completely known; but, in other cases

met in AVLIS expansions, it is impossible to know a priori the Mach number at the exit of the Knudsen

layer (cf. [21]);

• the boundary condition /k
i ðvÞ on the source SU–Fe is not a Maxwellian because of the heating electronic

beam (one of the uranium energy metastable level is excited, see Section 5.2): this makes much more dif-

ficult to obtain analytical results similar to those of [27,28].

Thus, we have to find another way to obtain the boundary condition for the multispecies Euler system at

the source SU–Fe.
4.3.3. The Marshak condition for the Euler system coupled with a kinetic scheme

The Marshak condition was proposed in Los Alamos around the year 1940 for radiative transfer and

neutron transport problems. Then, it was extended and justified in [24] to the gas dynamics equations to

find boundary conditions for the asymptotic matching on a wall of the Navier–Stokes system and, then, to

give slip boundary conditions: this gives Robin boundary conditions.

The Marshak condition. If we suppose that we can apply at x ¼ 0 a Dirichlet condition in the case of the

Euler system, the Marshak condition simply means that ðfYkgk; q; u; T Þx¼0 is solution of the non-linear
problem

X
i

Z Z Z
vx>0

mkvxM
k
i ðvÞx¼0 dv ¼

X
i

Z Z Z
vx>0

mkvx/
k
i ðvÞdv for all k 2 f1; . . . ; kg;

X
k;i

Z Z Z
vx>0

mkv2xM
k
i ðvÞx¼0 dv ¼

X
k;i

Z Z Z
vx>0

mkv2x/
k
i ðvÞdv; ð57Þ

X
k;i

Z Z Z
vx>0

mkvx
v2

2

�
þ �ki

�
Mk

i ðvÞx¼0 dv ¼
X
k;i

Z Z Z
vx>0

mkvx
v2

2

�
þ �ki

�
/k

i ðvÞdv;

where the MaxwellianMk
i ðvÞx¼0 is defined by (53) with ðfYkgk; q; u; T Þ � ðfYkgk; q; u; T Þx¼0 (we recall that i is

the ith electronic metastable energy level of the species k).
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Coupling of the Marshak condition (57) with a kinetic scheme. We see that the difficulty is now to solve the

non-linear problem (57); moreover, it is not obvious that a Dirichlet condition is a good boundary con-

dition for the Euler system at the continuous level. To avoid these difficulties at the discrete level, we

construct a ghost cell on the source SU–Fe;qþ1=2 defined by the solution of (57), and we apply the kinetic

decomposition of the macroscopic fluxes on SU–Fe;qþ1=2 to obtain the (explicit) macroscopic numerical

fluxes used to asymptotically match the fluid domain on the uranium–iron source SU–Fe. Then,

ðIk; };@Þqþ1=2 used in the numerical scheme (50) and (51) is given by

In
k;qþ1=2 ¼ Isource

k;qþ1=2 þ I�;n
k;qþ1=2;

}n
qþ1=2 ¼ }source

qþ1=2 þ }�;nqþ1=2;

@n
qþ1=2 ¼ @sourceqþ1=2 þ @�;nqþ1=2;

ð58Þ

with

Isource
k;qþ1=2 ¼

X
i

Z Z Z
vx>0

mkvx/
k
i;qþ1=2ðvÞdv;

}source
qþ1=2 ¼

X
k;i

Z Z Z
vx>0

mkv2x/
k
i;qþ1=2ðvÞdv;

@sourceqþ1=2 ¼
X
k;i

Z Z Z
vx>0

mkvx
v2

2

�
þ �ki

�
/k

i;qþ1=2ðvÞdv

ð59Þ

and with

In;�
k;qþ1=2 ¼

X
i

Z Z Z
vx<0

mkvxM
k
i ðtn; xqþ1; vÞdv;

}n;�
qþ1=2 ¼

X
k;i

Z Z Z
vx<0

mkv2xM
k
i ðtn; xqþ1; vÞdv �

X
k

}n;�
k;qþ1=2;

@n;�
qþ1=2 ¼

X
k;i

Z Z Z
vx<0

mkvx
v2

2

�
þ �ki

�
Mk

i ðtn; xqþ1; vÞdv �
X
k

@n;�
k;qþ1=2:

ð60Þ

We can see that, due to the kinetic decomposition of the macroscopic fluxes, we do not have to solve the

non-linear problem (57) and that this boundary condition is similar to the boundary condition on the

kinetic–fluid interface I defined by (54) and (55).

The formulas giving ðI; };@Þn;�k;qþ1=2 in (60) and considered as functions of ðqk; u; Pk;EkÞnqþ1 are written in

Appendix A.
The formulas giving (59) depend on the value of the distribution functions /k

i ðvÞ which, in the AVLIS

process, modelize the interaction between the source SU–Fe and the heating electronic beam. If /k
i ðvÞ are

Maxwellians defined by (53), the formulas are again given in Appendix A.

Thus, the Marshak condition allows us to a priori take into account any emission condition /k
i ðvÞ,

without postulating the value of the Mach number at the exit of the Knudsen layer and without doing any

complicated analytical calculus: this technique is very pragmatic but gives very good numerical results.

For example, when the mesh size of the fluid domain is of the order of the mean free path, the mac-

roscopic quantities found in the Knudsen layer by solving the Euler system with the asymptotic matching
are almost equal to the macroscopic quantities given by the kinetic model; nevertheless, for a mesh size

bigger than the mean free path, the results are of course less precise but are still very good, see the following

part.
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5. Application to the simulation of the Atomic Vapor Laser Isotopic Separation process

In this section, we apply the kinetic–fluid coupling technique proposed in the previous sections to

simulate the expansion of the uranium–iron gas mixture in the AVLIS process, process which is described

in Section 1 of this paper. The geometry is supposed to be axisymmetrical around the X -axis, the radial axis
being noted R. Fig. 3 defines the physical domain D in that geometry.

Let us note that the Wang Chang–Uhlenbeck equations (3) are solved with the Monte-Carlo code

presented in [6,7] whose algorithm is based on the Particle Test Monte-Carlo (PTMC) method and not on a
classical Bird type method. Nevertheless, the choice of the Monte-Carlo technique used to solve the Wang

Chang–Uhlenbeck equations does not interfere with the kinetic–fluid algorithm (more exactly, the

boundary conditions (52), (53), (54) and (55) at the kinetic–fluid interface are independent of the Monte-

Carlo algorithm) except for the gain in CPU time and in computer memory (see below).

At last, let us remark that the proposed kinetic–fluid coupling algorithm was tested with success in [21] in

the case of a monospecies perfect gas, this simple configuration allowing to compare for example the

proposed asymptotic matching in the Knudsen layer (see Section 4.3.3) with the asymptotic matching

deduced from the numerical and analytical results of [26–28] (see also Section 4.3.2).
Fig. 3. Mesh of the physical domain (vacuum chamber, see Fig. 1).
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5.1. The crater and the fluid domain F

Fig. 4 is a zoom of the area where the uranium–iron is evaporated (see also Fig. 3): this area includes a

crater; the boundary surface of this crater defines the source SU–Fe. This shape is due to the fact that the

uranium–iron source is excavated by the impact of the electronic beam during the evaporation. The source

SU–Fe, the Knudsen layer and the fluid domain F are included in the domain described in Fig. 4 (see also

the simplified Fig. 2).

5.2. Emission conditions on the source SU–Fe

We suppose that the temperature Ts on the surfaceSU–Fe is not uniform and divides the sourceSU–Fe on

three areas (cf. Fig. 4):

for r6R1 : TsðrÞ ¼ 3400 K ðR1 ¼ 0:85 10�2 mÞ;
for R1 < r6R2 : TsðrÞ ¼ 3200 K ðR2 ¼ 1:7 10�2 mÞ;
the last part of SU–Fe is at the temperature TsðrÞ ¼ 3000 K:

ð61Þ
Fig. 4. Crater and kinetic–fluid interface.
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This non-uniform temperature onSU–Fe is due to the presence of the electronic beam which only impacts

the center of the crater (defined by r6R1). Knowing these temperatures, we define the emission distribution

functions /k
i ðvÞ with:

For the uranium ðk � 238U):

/k
i ðvÞ ¼ Cste

k;i ðTsÞ 	 nksðTsÞ 	 exp
�
� mv2

2TsðrÞ

�
	 gki exp

�
� m�ki
TsðrÞ

�
if i ¼ 1 or 2 and for all rP 0; or if i ¼ 3 and r > R1; ð62aÞ
/k
i ðvÞ ¼ Cste

k;i ðTs; T�Þ 	 nksðTsÞ 	 exp
�
� mv2

2TsðrÞ

�
	 gki exp

�
� m�ki

T�

�
if i ¼ 3 and r6R1: ð62bÞ

The temperature T� in (62b) will be defined in (64). Let us note that we can neglect the differences between
the atomic masses and between the metastable energy levels of 235U and 238U for the simulation of the

uranium gas expansion.

For the iron (k � Fe):

/k
i ðvÞ ¼ Cste

k;i ðTsÞ 	 nksðTsÞ 	 exp
�
� mv2

2TsðrÞ

�
	 gki exp

�
� m�ki
TsðrÞ

�
if i ¼ 1 or 2 and for all rP 0: ð63Þ

The constants Cste
k;i in (62a)–(63) are normalization constants easily deduced from (13). The density nks ðTsÞ in

(62a) and (62b) is the vapor saturation density of the uranium on the surfaceSU–Fe at the temperature TsðrÞ:
it is given by a formula of the type Clausius–Clapeyron (see [29]); to simplify, the iron density nksðTsÞ in (63)
is supposed to be equal to 11.25% of the uranium density nks ðTsðr6R1ÞÞ in (62b).

Knowing the emission conditions (61)–(63), we can easily estimate the local mean free path of the gas

mixture on the source SU�Fe : it is between 10
�5 and 10�4 m which induces a tiny local Knudsen number Kn

(Kn 2 ½10�3; 10�2�). Moreover, we also deduce the evaporation rate which is equal to 3.7 kg/h for the

uranium and to 0.2 kg/h for the iron.

The value of degenerescencies gki and of metastable energy levels defined by �ki � �h
mk

mki (mk is the atomic

mass and �h is the Planck�s constant: thus, mki is a frequency) are the followings:

For the uranium:

gk1 ¼ 13;
gk2 ¼ 11;
gk3 ¼ 514

8<
: and

mk1 ¼ 0;
mk2 ¼ 620 cm�1;
mk3 ¼ 8338 cm�1:

8<
:

For the iron:

gk1 ¼ 9;
gk2 ¼ 26

�
and

mk1 ¼ 0;
mk2 ¼ 1466 cm�1:

�

In (62a)–(63), we only consider three metastable levels for the uranium and two metastable levels for the

iron although the electronic structure of the uranium and of the iron is much more complicated: the last

level (and its degenerescence) is an ad hoc average of the other metastable levels. Indeed, it is impossible to

treat all the metastable levels for evident computer reasons; moreover, one of the most important infor-

mations that we want to know from the simulations is the number of uranium atoms at the second level

(m ¼ 620 cm�1) compared to the number of uranium atoms at the first level which is the fundamental level

(m ¼ 0), this quantity being also deduced from experimental measures using laser absorption measurements
(cf. Fig. 3): thus, we do not really need to know in detail the distribution functions of the uranium from the

third metastable electronic energy level.
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Moreover, the temperature T� in (62b) modelizes the excitation of the uranium atoms because of the

electronic beam which heats the center of the source SU–Fe (the center is defined in (61) by r6R1). This

temperature is given by

T� ¼ C� 	 Tsðr6R1Þ; ð64Þ

where C� is an excitation parameter deduced from experimental studies (let us recall that the temperature

TsðrÞ of the source SU–Fe is defined by (61)). Here, we choose C� ¼ 1:7 (we suppose that the iron is not

excited by the electronic beam).

Let us note that the relations (61)–(64) are a simplified model which hides the difficulty to have an exact
theoretical model of the interaction of the electronic beam with the source SU–Fe.

5.3. Numerical results

In this section, we compare the results obtained without kinetic–fluid coupling and the results obtained

with the kinetic–fluid coupling algorithm presented in the previous part. We recall that the Wang Chang–

Uhlenbeck equations (3) are solved with a Monte-Carlo technique.

5.3.1. Identical meshes with and without kinetic–fluid coupling

For Figs. 5–12, the physical mesh ofD is defined in Figs. 3 and 4, and the size of the mesh is based on the

local mean free path which is a priori estimated by using the emission conditions on the source SU–Fe.

Below, we will take a bigger mesh in the fluid domain F for the kinetic–fluid coupling algorithm (cf. Figs.

13–15).

On Figs. 5–8, we can see the results with or without kinetic–fluid coupling in the crater for the axial and

radial velocities of the gas mixture.
Fig. 5. Radial velocity of the uranium–iron mixture in and above the crater without kinetic–fluid coupling.



Fig. 6. Axial velocity of the uranium–iron mixture in and above the crater without kinetic–fluid coupling.

Fig. 7. Radial velocity of the uranium–iron mixture in and above the crater with kinetic–fluid coupling.
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Fig. 8. Axial velocity of the uranium–iron mixture in and above the crater with kinetic–fluid coupling.

Fig. 9. Uranium density in the crater at r ¼ 5� 10�3 m with and without kinetic–fluid coupling.
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Fig. 9 shows the uranium density with and without kinetic–fluid coupling at the radius r ¼ 5� 10�3 m

(see Fig. 4) in the crater; Fig. 10 shows the uranium temperatures Tr and Tx without kinetic–fluid coupling

and the mixture temperature T with kinetic–fluid coupling (and, thus, given by the Euler system) at the

same radius in the crater.
Let us remark that Fig. 10 shows that the exit of the Knudsen layer is at about x ¼ �8� 10�3 m. It exists

also a (bidimensional) Knudsen layer parallel to the X -axis near the frontier of the crater which is at the

temperature of 3000 K (see Fig. 4) but we do not have tested yet the asymptotic matching of the fluid



Fig. 10. Uranium temperature in the crater at r ¼ 5� 10�3 m with and without kinetic–fluid coupling.

Fig. 11. Uranium and iron densities in the rarefied area (cf. also Fig. 3) with and without kinetic–fluid coupling.
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domain on that frontier (see the kinetic–fluid interface on Fig. 4). Moreover, let us note that this frontier is

more a condensation surface than an evaporation source because of the direction of trajectories of the gas

mixture (see Fig. 5 for example).

Fig. 11 shows the uranium and iron densities at a distance of 0.5 m from the crater and, thus, in the
rarefied area (see also Fig. 3).

Fig. 12 shows the population ratio of uranium atoms at the second level with and without kinetic–fluid

coupling at the heights of 0.12 and of 0.35 m from the crater where laser absorption measurements are

performed (see also Fig. 3). Let us note that this population ratio is the number of uranium atoms at the

second level m ¼ 620 cm�1 compared to the number of uranium atoms at the fundamental level m ¼ 0.

All these results show that the kinetic–fluid coupling algorithm gives very good results since they are

quasi similar to those obtained without kinetic–fluid coupling. Moreover, the Marshak conditions used to

asymptotically match the fluid domain on the uranium–iron source allows to almost obtain the real



Fig. 12. Uranium population ratio where it is done laser absorption measurements (cf. Fig. 3) with and without kinetic–fluid coupling.

Fig. 13. Uranium density in the crater at r ¼ 5� 10�3 m with and without kinetic–fluid coupling, and with a coarse mesh in the Euler

domain.
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macroscopic quantities in the Knudsen layer (when the mesh in the fluid domain is not modified, see also

below) although we solve the Euler system in this layer: this result is notable, all the more reason we take into

account a non-Maxwellian boundary condition (62b) at the part of the uranium source SU–Fe which is

impacted by the electronic beam.

5.3.2. Coarse mesh in the fluid domain with kinetic–fluid coupling

The size of a mesh in the crater domain is now much more important than the mean free path: in Fig. 4,

the number of rectangular meshes is equal to 130� 25; for the present numerical test, this number is of

50� 25 (i.e., there are now many less meshes in the crater in the X -direction). Figs. 13 and 14 show that we
do not obtain the macroscopic quantities in the Knudsen layer with the accuracy of the results presented in

the previous Figs. 9 and 10. But, we almost recover all the macroscopic quantities near the exit of the



Fig. 14. Uranium temperature in the crater at r ¼ 5� 10�3 m with and without kinetic–fluid coupling, and with a coarse mesh in the

Euler domain.

Fig. 15. Uranium population ratio where it is done laser absorption measurements (cf. Fig. 3) with and without kinetic–fluid coupling,

and with a coarse mesh in the Euler domain.
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Knudsen layer, i.e., at about x ¼ �8� 10�3 m. Moreover, we can see that the population ratio of uranium

atoms at the second level at the heights of 0.12 and 0.35 m is still accurate: compare Fig. 15 with Fig. 12.

This shows that the Marshak condition is a robust and accurate boundary condition, at least for our
problem.

5.3.3. Gain in CPU time and in computer memory

By solving the Euler system in the dense area and by asymptotically matching the Euler domain on the

uranium–iron source, we have divided by about 3 the CPU time. Moreover, the gain in computer memory

is of about 30%: indeed, since we do not solve the Wang Chang–Uhlenbeck equations in the fluid domain,

the number of particles used in the Monte-Carlo simulation is very less important.
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Let us recall that the Monte-Carlo algorithm in the kinetic domain is based on the PTMC method (see

[6,7] and the references herein). This Monte-Carlo algorithm is well adapted to stationary situations where

there are very different mean free paths, a classical Bird algorithm having greater difficulties to converge in

the high density area in AVLIS applications (although it is possible to improve the efficiency of the Bird

algorithm with time subcycling as in [10]). This is due to the fact that the PTMC algorithm does not give the

transcient regime but converges only to the stationary solution by using an ergodic hypothesis. Thus, the

gain in CPU time and in computer memory would be more important if the Monte-Carlo method was a

classical Bird type technique.

5.3.4. Two examples of physical informations which can be obtained for the evaporation AVLIS process from

the kinetic–fluid coupling algorithm with a reasonable CPU time

Example 1: effect of the iron on the uranium metastable levels. Fig. 16 shows that the population ratio of
uranium atoms at the second level is diminished when there are iron atoms in the uranium gas expansion.

This phenomena is well known in the AVLIS process and is directly due to the uranium–iron collisions

which increase the metastable energy transfers. Thus, the kinetic–fluid coupling algorithm allows us to

study the influence of the value of the iron density nks ðTsÞ in the source, and used in (63), on the population

ratio of uranium atoms at the second level by doing a lot of simulations with a reasonable CPU time and

without loss of accuracy.

Example 2: effect of the modelling of the interaction of the electronic beam with the uranium source. Instead

of using the relations (62a) and (62b) to modelize the interaction of the electronic beam with the uranium
atoms of the source, we can use the boundary condition

/k
i ðvÞ ¼ Cste

k;i ðTs; T�Þ 	 nksðTsÞ 	 exp
�
� mv2

2TsðrÞ

�
	 gki exp

�
� m�ki

T�

�
if i ¼ 1; 2 or 3 and for all rP 0; ð65Þ

where the temperature T� in (65) is again defined by (64): we suppose here that the electrons impact all the

surface SU–Fe of the crater because of multiple collisions. Fig. 17 shows that the population ratio of
Fig. 16. Uranium population ratio where it is done laser absorption measurements (cf. Fig. 3) with kinetic–fluid coupling, and with or

without iron in the uranium source.



Fig. 17. Uranium population ratio where it is done laser absorption measurements (cf. Fig. 3) with kinetic–fluid coupling, and with

different uranium emission laws on the uranium source.
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uranium atoms at the second level at the heights x ¼ 0:12 and x ¼ 0:35 m is now more important. Thus, the

kinetic–fluid coupling algorithm can also help to obtain a good modeling of the interaction of the electronic

beam with the uranium source with a reasonable CPU time.

Remark. Application of the kinetic–fluid coupling algorithm to the study of the coma of a comet.

Because of the similarity between the gas expansion in the AVLIS process and the gas expansion in the

coma of a comet (cf. [9]), phenomena which take place in the gas dynamics of a comet could be studied with

numerical simulations using a similar kinetic–fluid coupling algorithm to diminish the CPU time and the

required computer memory (we could do a similar remark for the simulation of a volcanic jet in a rarefied

atmosphere as on the Jupiter�s moon Io: cf. [10]). For example, in the AVLIS process, we find that the

number of light species – i.e., the iron – compared to the number of heavy species – i.e., the uranium – is less

important near the X -axis (this phenomena can be deduced from Fig. 11): the uranium expansion is more

collimated than the iron expansion. This phenomena, due to a high pressure gradient in the radial direction,
exists also in the coma of a comet and is called baro-diffusive effect (see [9]: in that case, the light species are

H and OH, and the heavy species is H2O). Let us note that in the macroscopic diffusive flux (48), the baro-

diffusive effect is represented by the term ð1� mk
m ÞCk

rxP
P .
6. Conclusion

We have extended to the semi-classical multispecies case the kinetic–fluid coupling technique firstly
proposed in [11] and we have applied this technique to the simulation of the gas expansion in the isotopic

separation AVLIS process. This technique implies that the algorithm is conservative and that there is no

overlapping between the kinetic and fluid domains.

From this point of view, firstly, we have proposed a kinetic scheme for the resolution of the multispecies

Euler system closed with a non-classical state equation. By extending to the multispecies case the relaxation
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schemes theory presented in [13], we have proposed an entropic result for this multispecies kinetic scheme,

result already proposed by [16] with an other approach. Secondly, we have proposed to use a Marshak

condition for the asymptotic matching of the fluid domain on the evaporation source to take into account

the effect of the Knudsen layer in the resolution of the Euler system.

The numerical results show an excellent agreement between the results obtained with and without ki-

netic–fluid coupling and show that the Marshak condition works very well for the asymptotic matching.

At last, the CPU time was divided by about 3 and the gain in computer memory was of 30% by using the

kinetic–fluid coupling algorithm for the proposed numerical tests, and without any loss of accuracy: this
should help the experimenters to well understand the gas expansion in the evaporation AVLIS process by

doing many numerical simulations with a moderate CPU time. Moreover, the general ideas of the kinetic–

fluid coupling algorithm presented in that paper could be applied for other strong evaporation problems as

those studied in [9,10].
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Appendix A. Kinetic fluxes for the Euler system

The kinetic fluxes of the kinetic scheme (33) are defined by

I

}
@

0
@

1
A

iþ1=2

¼
I

}
@

0
@

1
A

þ

iþ1=2

þ
I

}
@

0
@

1
A

�

iþ1=2

:

And, by calculating (37) and (38) with the monodimensional Maxwellian (39), we find the following nu-

merical half fluxes:

Iþ
iþ1=2 ¼

1ffiffiffiffiffiffi
2p

p
ffiffiffiffi
Pi
qi

s
Fðxþiþ1=2Þqi;
I�
iþ1=2 ¼ � 1ffiffiffiffiffiffi

2p
p
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Piþ1
qiþ1
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Fð�x�iþ1=2Þqiþ1;
}þiþ1=2 ¼
Pi
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Gðxþiþ1=2Þ þ
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2p

p
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Pi
qi
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Fðxþiþ1=2Þqiui;
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and

@�iþ1=2 ¼
Piþ1
2
	 uiþ1
2

Gð�x�iþ1=2Þ �
1ffiffiffiffiffiffi
2p

p
ffiffiffiffiffiffiffiffi
Piþ1
qiþ1

s
Fð�x�iþ1=2Þðqiþ1Eiþ1 þ Piþ1=2Þ;

where

xþiþ1=2 ¼ � uiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pi=qi

p ;
x�iþ1=2 ¼ � uiþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Piþ1=qiþ1

p ;
FðxÞ ¼ expð�x2Þ �
ffiffiffi
p

p
xerfcðxÞ

and

GðxÞ ¼ erfcðxÞ;

erfcðxÞ being the complementary error function defined by

erfcðxÞ ¼ 2ffiffiffi
p

p
Z þ1

x
expð�y2Þdy:
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