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Abstract

After having recalled the basic properties of the Wang Chang—Uhlenbeck equations, we describe a class of relaxation
schemes to solve the multispecies Euler system closed with a non-classical state equation, system which is the fluid limit
of these kinetic equations. Then, we show how to couple the resolution of the Wang Chang—Uhlenbeck equations with
the resolution of this Euler system by using a particular relaxation scheme — namely, a kinetic scheme — which allows to
define a natural boundary condition at the kinetic—fluid interface and by using a Marshak condition to take into ac-
count the effect of the Knudsen layer in the fluid domain through an asymptotic matching. Finally, we show appli-
cations in the field of the Atomic Vapor Laser Isotopic Separation (AVLIS).
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The aim of the Atomic Vapor Laser Isotopic Separation (AVLIS; SILVA in french) is to separate
uranium-235 from uranium-238 to obtain the fuel for nuclear plants (cf. [1]). Indeed, the natural uranium-
235 isotopic abundance is of about 0.7% and, to obtain the fissile fuel, we need to increase this abundance
to about 4%. From this point of view, the AVLIS process vaporizes uranium by using an intense electronic
beam which heats an uranium liquid source up to 3000 K (the uranium output is of some kilograms per
hour). Then, the uranium vapor is irradiated by a laser beam which ionizes the uranium-235 (and, ideally,
not the uranium-238) further collected as a liquid on collectors which are negative electrodes, see Fig. 1.
Moreover, to diminish the liquefaction temperature of the uranium on the electrodes (through the eutectic
effect), iron is added in the uranium source.
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Fig. 1. Vacuum chamber of the evaporation AVLIS process.

To describe the stationary uranium-iron gas mixture expansion, we use the Wang Chang—Uhlenbeck
equations (cf. [2,3]) — also named Wang Chang—Uhlenbeck-de Boer (WCUB) equations or semi-classical
multispecies Boltzmann equations — for two reasons:

o the first reason comes from the fact that the uranium-iron gas mixture is almost rarefied, which induces
that the expansion has to be described with a kinetic formalism of the Boltzmann type;

o the second reason is due to the fact that the high temperature of the gas mixture induces quantified energy
transfers between the electronic metastable energy levels of uranium and iron atoms: that is why we have
to use also a semi-classical formalism.

Some papers have already focuss on the simulation of these Wang Chang-Uhlenbeck equations for
AVLIS applications, see [5-8].

An other important feature of the AVLIS expansion is that near the source of uranium-iron, it exists a
tiny area where the vapor is very dense — thus, the mixture is almost at the thermodynamic equilibrium in
this area — which makes the CPU time and the computer memory used to discretize the Wang Chang—
Uhlenbeck equations dramatically increase. To diminish the CPU time and the required computer memory,
we discretize the fluid limit of the Wang Chang-Uhlenbeck equations in the dense area where the gas
mixture is at the thermodynamic equilibrium — i.e., in the fluid area — limit which is the multispecies Euler
system closed with a non-classical state equation. Of course, in the remaining part of the physical domain —
i.e., in the rarefied or kinetic area — we solve the Wang Chang-Uhlenbeck equations. In other words, we
have to solve a domain decomposition problem which is named here kinetic—fluid coupling.

Moreover, between the uranium-iron source and the fluid area, the gas mixture is not at the thermo-
dynamic equilibrium although it is very dense: this very tiny area is called Knudsen layer. To optimize the
gain in CPU time and in computer memory, we would like to asymptotically match the fluid area where the
Euler system is solved with the uranium-iron source.

Thus, the aim of this paper is to expose the kinetic—fluid coupling technique and the asymptotic
matching technique designed for the evaporation AVLIS process.

Let us note that the techniques and results presented in this paper can be extended to other strong
evaporation problems as for example for the description of the gas expansion in the coma of a comet
produced by sun radiations (cf. [9]) or for the description of a volcanic jet when the atmosphere of the
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planet is rarefied as on the Jupiter’s moon Io (cf. [10]). Besides, the authors of the paper [10] propose to
divide the physical domain in several subdomains and to use a particular time step in each subdomain to
overcome the difficulty of having a dense area and a rarefied area in the resolution of the kinetic model.

The technique chosen to obtain a good boundary condition between the kinetic and fluid domains ex-
tends to the semi-classical multispecies case the technique already proposed in [11] for classical aerody-
namics problems (see also [12] and the references herein). This technique uses a kinetic scheme (cf. [14]) in
the fluid domain to discretize the Euler system: this finite volume scheme allows to define a natural
boundary condition at the kinetic—fluid interface with no overlapping between the kinetic and the fluid
domains, this boundary condition making conservative the kinetic—fluid coupling algorithm. Moreover,
this kinetic scheme is a relaxation scheme (cf. [13]) which allows to obtain an entropic result for the res-
olution of the multispecies Euler system (cf. [19,20]).

The plan of this paper is the following: in Section 2, we recall the basic properties of the Wang Chang—
Uhlenbeck equations (this section summarizes the paper [17]). In Section 3, we recall the energy relaxation
and the kinetic schemes introduced in [13,14], and we extend these notions to the multispecies case. In
Section 4, we describe the kinetic—fluid coupling algorithm, the boundary condition at the kinetic—fluid
interface and the boundary condition — which is a Marshak condition — designed for the asymptotic
matching of the fluid area with the uranium-iron source. At last, in Section 5, we present numerical results
which show that the proposed kinetic—fluid coupling algorithm coupled with the asymptotic matching gives
very good results.

2. The Wang Chang—Uhlenbeck equations and its fluid limit

In this section, we recall the system constituted with the Wang Chang—Uhlenbeck equations (cf. [2,3]) —
which are semi-classical multispecies Boltzmann equations — and the fluid limit of these kinetic equations
which is the hyperbolic multispecies Euler system closed with a non-classical state equation. This section
summarizes the results written in [17].

In this paper, we use the following notations and definitions:

k is the subscript of the kth species;

k is the number of species in the gas mixture;

e € R* is the value of the ith quantified energy level of the species k;

gt € N is the degenerescency of the ith quantified energy level of the species k. The degenerescencies g
are integers which define the dimension of the subspace associated to the eigenvalues € of the quantic
Hamiltonian operator of the Schrodinger equation, Hamiltonian describing the quantified electronic en-
ergy transitions in an atom of the species &;

o f¥(t,x,v) € R" is the distribution function of the species k at the ith quantified energy level;

e my is the atomic mass of the species k.

The variable r € R" is the time, x € R® and v € R® are, respectively, the position in the usual space and
the microscopic velocity. Let us now define the macroscopic density p,, the macroscopic velocity u; and the
macroscopic total energy E; of the species k£ with

Pr = Z /R} myf} (v)dv,
pun =Y [ s o), (1)
prEr = Z /R3 mk(%vz + Ef'()J{ik(U) do
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and let us define the density p, the velocity u and the total energy E of the gas mixture, and the mass fraction
Y, of the species k£ with

p=3p =1,
T T

P”:ZPkUIm
k

u? (2)
pE:ZpkEkEp ?Jra ,
k

n:%e[O,l] (we see that Zﬁzl).
k

The quantities t and ¢ are, respectively, the specific volume and the specific internal energy of the gas
mixture.

2.1. The Wang Chang—Uhlenbeck equations

Let us consider a multispecies gas mixture whose distribution functions f/(¢,x,v) are solution of the
Wang Chang—Uhlenbeck equations (cf. [2,3])

Off +v-Vioft = O/ }a): o
where
o= Z Qf{/k—»h[ @
ik

The operator ij:h , is a collision operator describing a collision of a particle of the species k at the energy
level i with a particle &, at the energy level j, collision giving a particle of the species k at the energy level 4

and a particle &, at the energy level /. The collision operator ij’;h, is given by

k ks
ke )88 ~ . s
nt = / v [ff(v’)fl () g — fFO)f (0) | B (v, 0., Q) dv. dQ. (5)
v h&1

iyj—hl

The positive function %f‘;;h (v, 0., Q) is the collision kernel and will be defined below and @ is a vector of

the unit sphere %2. The couple of velocities (v,v,) and (¢/,v)) are, respectively, the pre-collision and the
post-collision velocities; they are related through

2 1
U/ = v, + Q\/_tukk* \/_ |U o U*|2 + AEIf‘k*
my 2

ij—h,D
V2u 1

;o Kk, 2 k. 6
U, =0y — Q—mk* 3 v — v, + Aei’j_,h,,, (6)

miU + my, v,

Vg = —————

my + mk*
where

A= (d =) + (g =€) (7
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with the reduced mass = mymy. /(my +my,). Thus, the integration set A+ g (0) In (5) is defined by

Af‘]k;h,( ) =% x {v* € R’ such that Jjv — v, +A61Hh, > 0}.
The relations (6) are equivalent to the kinematic relations of a microscopic inelastic collision that is to say
to the relations:

/ !
mv + my, v, = mv' + my v, (8a)

2 k o2 k. / k V2 ke
M+ mge; + me 5+ my € = mts + mge, + m 5+ my e (8b)

The relation (8a) supposes that the two particles which collide together define an isolated system; the re-
lation (8b) characterizes the conservation of the total microscopic energy before and after the collision, this
microscopic energy being the sum of a classical part — i.e., mk§ — and of a non-classical or quantic part —
i.e., myet: that is why we also name semi-classical Boltzmann operator the Wang Chang—Uhlenbeck operator
(5).

The collision kernel %, (v,v,,Q) is defined by

1/~>hl
B (070*79) =|v—u,- o (v,0,,9),

ij—h,l i.j—h,l
where o} th(v ., Q) is the microscopic cross- section of the collision (v, i), (v.,j) — (v, h), (v, ).

The cross-section d/’ ﬁh , must be related to oh i;,; through

818 ol (0.0, Q) o — v.|dodo. dQ = ghgl oy, (v 0, @) - o' — vl |dv/ dv, 42, 9)

tJ—»h,l

which is derived from the quantic Fermi’s golden rule (for classical collisions, the relation which is
equivalent to (9) is derived from the Liouville’s theorem).

A particular class of cross-sections model verifying (9) is the Anderson’s one proposed in [5]. This model
is defined by

Kk, ek,

Gi,j—m,l(”a v, Q) = O'0 b /—»hl(v v.) (10)
with

gher - (2 o — v’ + Aef,klh /)

’
ZGBm,n gfngn* : ( |U - U*| + A6lj*’m n)

(11)

pf‘?j]:h,l (Ua U*) -

015 G 0'0 ¥ being a strlctly posmve constant. The notation $m, n in (11) means that m and » are chosen in

the sum When 1|v — v*| + Ael o 18 OSitive (we recall that Ae .y 18 defined by (7).

Here, pl ﬁh (v, v*) [0,1] — which verifies ), , e ﬁh (v,v.) =1 — defines the (conditional) probability
transition from a given quantic electronic metastable state (i,j) to the quantic electronic metastable state
(h, 1) for the species k and k. knowing the velocities v and v,.

Let us remark that when we decide to “forget” the existence of quantic electronic metastable states in the
atoms, it means that we impose Ael =0 and gk =g} for each (i,j, h, [,k k.) (each electronic state is
supposed to be indiscernable from an other electronic state in that case). And, it is easy to prove that

= >".f% is solution of the classical multispecies Boltzmann equations associated to the hard sphere
model whose the constant cross-sections are equal to ay*

This remark shows that the Anderson’s model is interesting when it is possible to consider the atoms
globally as hard spheres because it needs only to have an estimation of the cross-section a’é‘k* to define
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k.
ai‘j*}h’l . . .
to have a theoretical or experimental evaluation of each o

oy with

(v, v., Q) (the complicated electronic structure of atoms with high atomic number makes very difficult

ff;h}l(v, V., 2)). In that situation, we can define

o’ =1 (), (12)

where r; is the radius of an atom of the species £ considered as a hard sphere. For AVLIS applications,
experimental results (cf. [4]) and ab initio simulations show that an atom of uranium can be considered as a
hard sphere with radius equal to 2.43 A; similarly, an atom of iron can be considered as a hard sphere with
radius equal to 1.53 A.

The Anderson’s model was experimentally justified in [7] and is used in Monte-Carlo simulations for
AVLIS applications (see [5,6,8]): in the numerical results of Section 5, we will used this cross-sections
model.

2.2. Convergence toward a Maxwellian equilibrium and fluid limit

In this section, we describe without proof the basic properties of the Wang Chang—Uhlenbeck equations
(3). The proof are written in [17].

2.2.1. Convergence toward a Maxwellian equilibrium
We have the following result:

Lemma 2.1. Let us suppose that the cross-sections af.‘";‘;hvl(v, v, Q) verifies (9). Then:

V(i k): 0F=0 < 3I({¥% >0},p>0,u,T>0)such that V(i,k) : fF(v) = 4*(v),

where M*(v) is the Maxwellian defined by

Yo p g 10 —u)’ +¢

ME(v) == . : _
i (v) e (2n B ) 32 7 (T) exXp [ my, T
my

: (13)

Z(T)=>,¢" exp(—ﬁ) being the partition function of the species k.
And by using the previous lemma with the classical H-theorem, we obtain:

Lemma 2.2. Let us suppose that the cross-sections aff‘";‘;h‘,(u, v., Q) verifies (9) and that f*(t,v) is solution of the
spatially homogeneous Wang Chang—Uhlenbeck equations (3) which means that

off(t,0) = OF({fF }ja)-
Then, we have

V(i k) lim - A, = 0.

2.2.2. Fluid limit

Let us now define the internal energy
ENy. Y, T) = E— L (14)

k—17
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with
E(N,....Y |, T)= Z:Yk@@k(T), (15a)
E(T) = &1(T) + &°(T), (15b)
&(T) =%m1k (15¢)
£M(T) = > gretexp (— [mef/T]) (15d)

Z(T) ’

where Z(T) = 3", g¥ exp(—[my€f/T]) is the partition function of the species k. The quantity 7 is the
temperature of the mixture and {Y;}, defines the mass fractions of the mixture. The energy &} is the internal
energy of the species £; éa,il and (9@201 are, respectively, the classical and the non-classical part of the internal
energy & of the species k.

By using Lemma 2.1, we can formally derive the fluid limit of the Wang Chang—Uhlenbeck equations:

Kk,

Property 2.1 (Fluid limit). Let us suppose that the cross-sections o, ﬁh,(v, V., Q) verify (9) and the property

34> 0/¥(v,0,, Q.0 Lk k) s ok, (0,0, Q) ~

i,j—h,l

(16)

N | —

and let us suppose that f¥(t,x,v) — which is now noted fF,(t,x,v) — is solution of the Wang Chang—Uhlenbeck
equations (3). Moreover, let us define ({Y,}, p;,u;, E;) with the relations (1) and (2) and let us suppose that

3({Yk}kapauaE)/£1£I(l) ({Y;c,/l}k,pmu/hEi) = ({Yk}kapauaE)'
Then, we formally have that

Lk gk
1111:% = M (17)

and that ({Y},, p,u, E) is solution of the hyperbolic multispecies Euler system
Vk - 6,(Ykp) + Vx . (Ykpu) =

O(pu) + V- (pu®@u —|—PT) —
O(pE) + Vs - [(pE + P)u] = 0

0,
0,

with E = %uz + ¢, system which is closed with the equations of state

e=6&N,....Y% ,T) (cf. (15)),

Moreover, the system (18) and (19) admits the specific entropy s(Yy,...,Y;_,,7,¢) defined by

s(. Y ,te) =Y Gisi(Y,t,T), (20a)
k
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1 3 T &l(T) Y
Yi,1,T) = —— | 1 =1 — 1 T k -1 — 2
i (Y%, 7, T) mk[ogr+2 og(mk>+og(3fk( ))+ka og(mkﬂ, (20b)
where the temperature T is solution of &(11,...,Y; |, T) = ¢ with e =E — %uz (r= % is the specific volume),

entropy which is associated to the entropy flux pu - s and which is a strictly convex function of the variables t
and e.

The system (18) and (19) is the multispecies Euler system closed with a non-classical state equation, and
defines the fluid limit of the Wang Chang—Uhlenbeck equations.

The property (16) is important: it supposes that there is only one microscopic time scale; if it was not
the case, there would be different relaxation time scales and the fluid limit could be more complicated (in
(16), 4 is proportional to the mean collision time and to the mean free path of the gas mixture). Let us note
that the Anderson’s model (10) and (11) verifies the property (16) as soon as it exists gy > 0 such that
O(at*) = a, for any (k,k.), which is the case in AVLIS applications: indeed, the radius of uranium and
iron atoms are of the same order (they are, respectively, equal to 2.43 and 1.53 A); then, the relation (12)
allows to conclude.

Of course, the proof of Property 2.1 is formal and an exact proof is still an open problem. Let us just
remark that from a theoretical point of view, we should precise in Property 2.1 the physical domain 2 with
the boundary condition on 02 where the Wang Chang—Uhlenbeck equations (3) are solved. Indeed, the
convergence result (17) could be false near 0% where it could appear kinetic boundary layers (the Knudsen
layer is a good example, see Section 4.3). Thus, the result of Property 2.1 has to be seen as a result which is
“almost true” in 2.

Let us note that we can write for each species k&

si(Yi, 7, T) = 58 (t, T) + spU(T) (21)
by defining the partial entropies s and s, respectively, associated to the classical part & = (g@f(T %) and to

the non-classical part ] = (E”’ECI(Tk) of the internal energy &, of the species & (cf. (15b)—(15d)). These partial
entropies are given by

st(en 1) = - og(min) + 3 o - )| (22)

k my

(knowing that Y7, = 7) and by

) = - ostra(r) + 1. h

Moreover, the entropy s verifies the second thermodynamic principle
—T'ds =dé + Pdr

when Vk : dY, = 0.
Finally, let us remark that (19) is equivalent to

EN,....Y% \Ti,....,T;) = ZYk@@k(Tk)
k
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with &;(T) given by (15b)—(15d) and with

V(k,l): T, =T, [(isothermal law),

P= ZP" (Dalton law),
%

Vk: Yt =1 (mixture law),

T; .
Vk: 1P =—- (equations of state).
my

3. Relaxation schemes for the multispecies Euler system

In this section, we propose a class of entropic schemes for the previous hyperbolic multispecies Euler
system (18)
Vk: 0,(Yip)+ V.- (Yipu) =0,
O,(pu) + V.- (pu®@u+ PT) =0, (25)
O(pE) + Vi - [(pE + P)u] =0

(E= %uz + ¢) closed with the equations of state

e=61,.... Y%, T),
P:L@(Yla"'vyzflapaT) EZPk(Zcva)7
7 (26)
Tk

Pe(pi, Tk) = pp—>
my

EM,..., Y, T) =, Yié(T) being defined by (15b)~(15d). This class of entropic schemes extends the
notion of energy relaxation schemes initially proposed in [13] and recalled below. Let us remark that this
entropic property is a strong stability property which induces that the scheme preserves the positivity of the
mass fractions, density, pressure and internal energy, and that the shocks, if they exist, are entropic;
nevertheless, this last property is of no use in AVLIS applications since there are no shocks but only ex-

pansions (see Section 5).
Let us recall that the system (25) and (26) is the fluid limit of the Wang Chang—Uhlenbeck equations (3),

is hyperbolic and admits the convex entropy s(Y1,..., ¥, 7,¢) given by
S(Y],-..,Y;71,T78) :ZYkSk(YlmraT)? (273')
%
1 3 T el(T) Y,
Y, 1, T)=——|1 “log| — ) +1 T - —log | — 2
e 7) = o floge + 3 og () +1og (24(1) + 00— tog (1) (27)

and associated to the entropy flux pu - s, see Property 2.1.

In this paper, we impose that the equations of state are given by (26) since one of the aims of this study is
to couple the Wang Chang—Uhlenbeck equations (3) with its fluid limit. Moreover, to simplify the results
and notations, we suppose now that the number of species is equal to two and we do not describe in detail
all the properties and proof. Nevertheless, we generalize and we precise in [19] (see also [20]) all the
properties described below for any number of species and for any equations of state admitting a ther-
modynamic entropy.
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After, we will derive a particular class of relaxation schemes for the resolution of the multispecies Euler
system (25) and (26) — namely the kinetic schemes — which will allow us to recover in a quite different way an
entropic result initially proposed in [16]. These kinetic schemes will be used in the following section to
couple the fluid domain with the kinetic domain.

In the following section, we briefly recall the basic properties of the energy relaxation schemes intro-
duced in [13] and the basic properties of the kinetic schemes introduced in [14].

3.1. The energy relaxation schemes and the kinetic schemes

3.1.1. The energy relaxation schemes
The aim of this class of schemes proposed in [13] is to describe a general way to obtain entropic schemes
for the resolution of the classical Euler system

a[p + Vx : (pu) = Oa
3,(pu) + V- (pu®u+PT> —0, (28)
0(pE)+ V- [(pE+ P)u] =0

for any state equations ¢(t, P) associated to a thermodynamic entropy by introducing relaxation terms (we
recall that T = 1/p).

For that purpose, let us choose a state equation ¢,(t, P,) more simple than the original state equation
&(t, P) — for example, as the perfect gas equation of state — and let us define the energy relaxed system

0p+ V- (pu) =0, (29a)
0,(pu) + V, - (pu Qu+ Pﬁ) =0, (29b)
0/(pE,) + V- [(pE, + P)u] = % [er — F (1, 64)], (29¢)
0:(pey) + V. - (puey) = — % [er — F (7, 84)] (29d)

with E, = % + ¢, and where the energy 7 (t,¢,) is such that

e.(t,P) + Ft,6,(1,P)| = &(z, P) (30)

(the function # exists and is unique as soon as we suppose that ¢ and ¢, are such that 0pe > 0 and
0p,&, > 0). Let us define £ = E, + ¢,. Then, the important characteristic of the system (29a)—(29d) is that it
formally converges to the system (28) when /4 goes to zero. In fact, it is possible to show that under some
constraints, in particular on the choice of the state equation ¢,(z,P,), the formal first-order asymptotic
equilibrium system of the relaxed system (29a)—(29d) is given by

Op + Vi - (pu) =0,
0,(pu) + V, - (pu Qu+ PT) = AV, (uV, - u),
0,(pE) + V.- [(pE + P)u] = 2V, - (¥, - )

where the viscosity u is a positive function of the thermodynamic variables (see [13]). This property means
that to obtain a numerical schemes for (28), we can discretize (29a)—(29d) by making A go to zero. The
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scheme is based on a splitting between the hyperbolic terms and the relaxation terms (n is the time sub-
script):

Hyperbolic stage. From an initial condition (p”",u", E") and knowing ¢, ¢} and P’ (which is equal to P"),
we solve on a spatial mesh and on a time step Af the system

0+ V- (pu) =0, (31a)
3,(pu) + V, - (pu®u+Pﬁ) —0, (31b)
0(pE,) + V- [(pE, + P)u] = 0, (31c)
O/(pey) + Vi - (puey) = 0. (31d)

Then, we obtain (p"'/2,u"1/2 Er1/2 ¢/ in each spatial mesh.
Energy relaxation stage. To obtain (p""! u"t! E"!), we solve from the initial condition
(p" V2, 12 Er1/2 @ 12) n each spatial mesh the spatially homogeneous system

afp = Oa
pou =0,
pOE, = %[gb — 7 (1,8, (32)

1
p0se, = -7 [3b - 37(1'7341)]

with the same time step Af and with 4 — 0. It induces that
ol = 12,

W = 2,

En+1 _ EZ+1/2 4 8Z+1/2-

Afterwards, we deduce &' and &*' such that E"' — (u'*)?/2 = &'t 4+ &+ and &t = 7 (1/p, &),
And, due to the relation (30), we obtain that P*! = P! (the equilibrium is indeed an isobare equilibrium).

An immediate property of the energy relaxation scheme is that, if we know a solver for the Euler system
(31a)—(31c) associated to the equation of state ¢,(t, P,), it is easy to deduce a solver for the Euler system (28)
associated to the equation of state &(t, P) without doing new developments. Let us note that a natural
choice is to take g,(t, P,) = tP,/(y, — 1), where y, > 1.

At last, it is also possible to show that this energy relaxation scheme has entropic properties (cf. [13,18]).

The aim of this section is to obtain numerical schemes for the resolution of the multispecies Euler system
(25) and (26) with a similar relaxation technique and having similar entropic properties for the mixture
entropy (27a) and (27b).

3.1.2. The kinetic schemes for any state equation

In this section, we briefly show that the kinetic schemes introduced by Perthame in [14] for a mono-
species perfect gas (with y €]1, 3]) can be assimilated to a particular energy relaxation scheme when they are
applied to any state equation: this remark was already written in [15].

To simplify the notation, we now suppose that the geometry is monodimensional Cartesian. The sub-
script i and n are, respectively, the space and time subscripts of the mesh {x;} and of the time sequence {#,};
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Ax; = X112 — X1 2 and At =, — t, are, respectively, the space and time steps. The numerical scheme to
solve (28) closed with the equation of state ¢(z, P) is defined by the conservative scheme

n+1/2 n ~n ~n
pi* = pi — E(Jiﬂ/z - ‘5[71/2)7
At
n+1/2 n n n
(p”)i+ 2= (pu); — E(piHﬁ - @iq/z)a (33)
At

(PE)?H/Z = (PE)7 T Ax (Nz"’+l/2 - N?—uz)-

In this section, the atomic mass of the monospecies gas is noted m.

Kinetic schemes for a perfect gas with y = 3. We now suppose that ¢(z,P) = tP/(y — 1) with y = 3. The
derivation of the kinetic schemes for a perfect gas with y = 3 is based on the following lemma (cf. [14] and in
[22, Lemma 7.3, p. 285]):

Lemma 3.1 (B. Perthame). Let us define the initial conditions p(0,x), u(0,x) and E(0,x) of the Euler system
(28) which are supposed to be regular and let us define the function y(v.) = 0 such that

/R (1, 02)2(e) duy = (1,1),

(34)
x(=v) = x(vy).
Let h(t,x,v,) be solution of the pure transport equation
0h + v,0,h =0,
o (35)
h(t =0,x,v,) = M(x,v,),
where
M(x, 0,) = 0(0,x)/m / v, — u(0,x)
VP(0,x)/p(0,x) "\ \/P(0,x)/p(0,x)

with P(0,x) such that ¢(t,P) = tP/2 (m is the atomic mass). Then, p(t,x), u(t,x) and E(t,x) defined by
ple0) = [ mh(e,x,0.)do
R

p(t,x)u(t,x) :/mvxh(t,x, vy) duy,
R
2

p(t,x)E(t,x) = / ml;—xh(t,x, v,) doy
R
is an approximation in At* of the solution of (28) when t < At (in 1D Cartesian geometry).

Thus, by using an upwind scheme to solve (35) and by taking y(v,) = ﬁexp(—vﬁ /2), we obtain a first

order numerical scheme for the monospecies Euler system (28) closed with the equation of state
¢(t, P) = tP/2, the numerical fluxes being defined by

3 * 3\~
© = +
R

i+1/2 i+1/2 i+1/2

3
(36)

A
A
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where the positive and negative half fluxes are given by

+
3 1
o) = mof o |Mipu ) d, (37)
R i+1/2 o0 vy
and by
3\ 1
© :/ mu, [ vc | M(pisy, this1, Bir) (0r) doy, (38)
R/ 7 oy

M(p, u, P)(v,) being the classical monodimensional Maxwellian

_ p/m ex _ (Ux - u)Z
M(p.u P)(0) =~ S ] (39)

The important property of this scheme is that it is possible to prove that it is positive and entropic under
a classical CFL criterion (cf. [16]). The formulas giving the numerical fluxes 3, p and N are given in
Appendix A.

Kinetic schemes for a real gas. By using the technique of the energy relaxation scheme previously recalled,
it is easy to extend the kinetic schemes to any state equation. Indeed, let us define ¢, with

P
ea(‘C?P) - 7
and let us note
&(1,P) = &(t,P) — &,(t, P). (40)

Let us now solve (31a)—(31c) with the kinetic scheme described before: then, the numerical fluxes (3, p, X,)
are given by (36)—(38), and Eq. (31d) is solved with the kinetic scheme

)n+l

At n n
(pes (pes); — B(Nb,Hl/Z - Nb,i—]/Z)

with N} itz = sz+1/2 + NZI_-H/Z’

n,+ ~n,<t+ n,— — n e
Nyie =8, S and Nyiin = 8t - i

By noting that (cf. Appendix A)

Pu,
N:z+l/2 ( \/7Mat> +Eat : 1+1/2

and that

_ P 3 ~
N = 4 &4 EMaﬁinLl +Eqiv S

(M, = u/+/3P/p is the Mach number associated to ¢,(t,P,) = tP,/2 and %(x) is defined in the Appendix
A), we easily find that the kinetic scheme obtained in that way can be written with (33), where the formulas
giving the numerical fluxes 3, o and R considered as functions of p, u, P and E are exactly the same as




252 S. Dellacherie | Journal of Computational Physics 189 (2003) 239-276

those obtained when the gas is supposed to be a perfect gas with y = 3, formulas already given in Appendix
A.

Thus, the kinetic schemes allow us to obtain general formulas for any state equation to define the nu-
merical fluxes. Moreover, we could prove, as in the case of a perfect gas with y = 3, that this kinetic scheme
is positive under a classical CFL condition for any state equation &(t, P) as soon as ¢&,(t, P) is chosen such
that &(7,P) >0. We could also prove that when the equation of state is of the form
&(t, P) = 6%(T) + 6™(T), where 6 (T) and 6™ (T) are defined by (15c) and (15d) and where tP = T /m, the
kinetic scheme is entropic for the entropy s defined by (27b) under a classical CFL criterion, see [16].

3.2. The relaxation schemes applied to the resolution of the multispecies Euler system

We now apply the previous ideas in the case of the multispecies Euler system (25) and (26). The results
proposed here are generalized in [20] (see also [19]) to other equations of state and to non-miscible fluid
mixtures.

The central idea is to artificially “separate’ each species by supposing that each vector (p,, p, i, p,Er) of
the species k is solution of the monospecies Euler system

Opy + Vi - (prur) = 0,
0/ (pyur) + V- (pkuk Q uy + Pﬁ) =0, (41)
Oi(piEx) + Vi - [(phEx + P)u] = 0

closed with the equations of state

& = (g]k(Tk) (Cf (ISb)),
Pi(pp T) = pkmik' )

The variables p,, uy, Ex = % + &, P, and T are, respectively, the density, the velocity, the total energy, the
pressure and the temperature of the species k. A corollary of Property 2.1 is that each system (41) and (42) is
hyperbolic and that

se(ti, &) = s (1, ) + 5}(T3) (43)
with
1 3 T
s (th, Th) = T |:10g(mkfk) +§ log (m—iﬂ (44)
and
1 Sncl T
) =~ [logwk(m) a0 (45)

is a thermodynamic entropy associated to the entropy flux p,u; - s;. The partial entropies s§' and s are,
respectively, associated to the energies &' = 6(7;) and & = §}(T;) given by (15¢) and (15d).

Since the fluid limit (25) and (26) of the Wang Chang-Uhlenbeck equations (3) imposes that the mixture
is an isothermal mixture (i.e., 7} = T»), we couple the two systems (41) (k = 1 and k = 2) with a relaxation
term proportional to (7, — T}) to force the two systems to relax toward an isothermal equilibrium; in the
same way, we relax the systems (41) with a relaxation term proportional to (u; — u;) to force the two
systems to relax toward an isovelocity equilibrium.
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Indeed, we propose the following relaxed system

0p1 + Vi (prur) =0, (46a)
= 1
o(pyu) + V., - (p1u1 ® u; +P11) :I(uz_ul); (46b)
1 1
(P Er) + V- [(pE1 + P)u] = I(Tz -T)+ jljimer(UZ —uy), (46c)
a1:p2 + vx : (p2u2) = Ou (463/)
= 1 ’
0i(pyun) + V., - (p2u2 Q uy + P21) == (g —ua), (46b)
1 1 /
0(prEa) + Vi - [(p2E2 + Po)us] = 7 (I — 1) + 7 Uinter (11 — u2), (46¢)

where
(]inter S [mll’l (M] s uz)7 max (u1 s uz)]

We name interfacial velocity the velocity Uiy, by analogy with the multiphasic Euler system (cf. [23]); 1is a
strictly positive parameter (for example, 2" is proportional to (p, + p,)v, where v is a strictly positive
frequency): we formally see that the relaxation terms force the temperatures and the velocities of each
species to relax to the same values, and that the more A is important, the less the system (46a)—(46c")
converges to the isothermal—isovelocity equilibrium.

Let us note that the system (46a)—(46c’) is hyperbolic since the hydrodynamic transport for the species 1
and the hydrodynamic transport for the species 2 are coupled through the relaxation terms and not through
differential terms.

3.2.1. Asymptotic analysis of the relaxed system

Of course, in order to have a system (46a)—(46¢’) well posed, it is important that the isothermal-isove-
locity equilibrium would be a stable equilibrium. We have the following result whose proof is presented in
[20]:

Theorem 3.1. The formal first-order asymptotic equilibrium system of the relaxed system (46a)—(46c') is given

by the system

0(Y1p) + V- (Npu) = V.- (A1),
(Yap) + Vs - (Yapu) = V- (A1),

0
d(pu) + V. - (pu @ u+ P1) = V,(uV, - u),
0,(pE) + V. - [(pE+ P)u] =V, - [A(mJy + hay)] + V- (AuuV, - u)

closed with the state equation (26) and with

(47)

Ji =L =ph h(LV.P - YV, P),
he = & + B/ (Yip)
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and where the viscosity u is defined by

w(Yi,p,T) =

Y2Y2p'T <d£‘1(T)/dT d&(T)/dT)z
(Yi(d&1(T)/dT) + Ya(d&5(T) /dT))? (e m '
We see that the viscosity p is positive and will be equal to zero when:
e Y, =0or ¥ =1, i.e., when the mixture is pure. Let us remark that, in that case, we have also J; = 0;
o when mdé&(T)/dT = mydé&,(T)/dT: this is the case when the species 1 and 2 are identical that is to say
when the mixture is again pure.
Let us note that the fluxes J; can be rewritten with

mk) VXP]7 (48)

Jr =Din(P, Cy) {chk + (1 o Cr P

where Dy,(P, C)) is a positive function and where C; is the molar fraction of the species & in the mixture
defined by C; = Ym/my;, m being equal to (Y;/m; + Yz/mz)_l. We recognize in (48) the Fick law and the
baro-diffusive effect which are classical diffusion processes.

This theorem shows that, near the equilibrium, the system (46a)-(46¢’) is similar to a multispecies
Navier—Stokes system which formally converges to the multispecies Euler system (25) when 4 goes to
ZEro.

3.2.2. Definition of the relaxation scheme and entropic result
To obtain a numerical scheme for the multispecies Euler system (25) and (26), we discretize the system

(46a)—(46¢') by making / go to zero to force the isothermal-isovelocity equilibrium. The numerical resolution

of (46a)—(46¢') is based on a splitting between the hyperbolic terms and the relaxation terms (n is the time

subscript):

o Hyperbolic stage. From an initial condition (¥}, p",u", E") and knowing Py, Py and 7", we solve on the
spatial mesh {x;} and on a time step Af the independent systems (41) for k = 1 and k£ = 2. Thus, we ob-
tain (Y2 prt1/2 02 B2 in each spatial mesh x;.

e Relaxation stage. To obtain (¥"*!, p"! w1 E™1) we relax on the same time step At the system to the
isothermal-isovelocity equilibrium from the initial condition (Yk”H/ 2 il 2,uZ+1/ Z,E,'f“/ ?) by solving in
each spatial mesh

Y

oy = 0,
o,p =0,

| —

Yip0u; == (ua — uy),

1
Ylpa,El = (Tz_Tl)+zUinter(u2_ul)a

[ PN SRR

Y00, = = (uy — ua),

Y,p0,E, =

B

1
(Tl - TZ) +I (]inter(ul - uZ)
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with A — 0 (we recall that ¥, = 1 — Y;). Thus, we have

p _pn+1/2+p

Y1n+1 — "+1/2/pn+1

n+l/2

Mn+1 _ Yln+1/2 n+1/2 + Yn+l/2 n+1/2

El — Ylﬂ+l/2En+1/2 + Yn+l/2En+1/2

And the pressures P!, Pyt and the temperature 7! are such that

un+1 2
Y1n+léal(Tn+l) + Y2"+1§2(Tn+1) — En+1 _ ( 5 ) ,
Tn+1
P1n+1 — Yln+lpn+l ,
mi
Tn+1
Pn+1 — Yn+1 n+1
2 2 P "
(we easily verify that E"+! — @ - 0 as soon as 8”“/ >0 and 8"“/ 2> 0, and thus as soon as each hy-

perbolic stage is positive).
The main result of this section is the following:

Theorem 3.2. Let us suppose that each numerical scheme used to discretize each hyperbolic step (41) and (42)
is entropic. Thus, the relaxation scheme defined before and used to discretize the multispecies Euler system (25)
and (26) is entropic.

The proof is based on the fact that the entropy mixture s(¥, 7, ¢) given by (27a) and (27b) is the solution
of a minimization problem similar to the one of the Gibbs theorem coming from the kinetic theory (cf.
[18,20)).

This result — which is very general in fact (cf. [20]) and not only true for the equations of state (26) —
shows that we do not have to construct new solvers to obtain an entropic scheme for the multispecies Euler
system (25) and (26) as soon as entropic solvers are known for each monospecies Euler system (41) and (42).
In the following section, we propose a particular class of these relaxation schemes — the kinetic schemes —
and, by using Theorem 3.2, we will recover an entropic result for the kinetic schemes applied to the
multispecies Euler system (25) and (26), result previously proposed in [16].

3.3. The kinetic schemes applied to the resolution of the multispecies Euler system

We define the (explicit) kinetic scheme for the hyperbolic step (41) and (42) with

n+l1/2 _ p At ~n

Pri ™ = Pri— Ax (3% it1/2 Sz,ifl/z)a (49a)
u At, ;

(pittr); e = (pxtu); — E(pkﬁrlﬂ - @k,i71/2)7 (49b)
n A n n

(PiEx); 2= = (peEr); — AX(NI”H/Z Nk,i—l/Z)? (49¢)

where the numerical fluxes (3, ox,N;) are the kinetic fluxes defined in Appendix A. Then, by using
Theorem 3.2, we casily obtain the following proposition already obtained in [16] with another technique
(although we use one of the results proposed in [16], see the proof below):
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Proposition 3.1. Let us suppose that the equations of state are defined by (26). Then, the kinetic scheme
defined by

At

Vk : (Ykp);-m = (Ykp)? - E(SZ,H—I/Z - Sz,i—l/z)v
()} = (pu)! — S (s = 2 12) (50)
(PE)?H = (pE); — % (R, = RE ),
where the numerical fluxes are given by
= Z §%ks
‘ (51)

N:ZNk
k

is entropic under a classical CFL criterion for the specific entropy s defined by (27a) and (27b) and associated
to the entropy flux pu - s.

Proof of Proposition 3.1. We know that the monospecies kinetic scheme (49a)—(49c) is entropic under a
classical CFL criterion for the entropy s; given by (27b) (with t = Y;7,): this result is shown in [16]. Then,
we deduce the result by applying Theorem 3.2 and by summing each Eq. (49b) and each Eq. (49¢) together
knowing that k =1,.... k. O

4. Kinetic—fluid coupling and the Marshak condition for the multispecies Euler system

The aim of this section is to propose for the simulation of the gas mixture expansion of the AVLIS
process an algorithm of domain decomposition to couple the resolution of the Wang Chang—Uhlenbeck
equations (3) in the kinetic area and the resolution of the multispecies Euler system (25) and (26) in the fluid
area, the scheme used to discretize the Euler system being the kinetic scheme proposed in the previous
section.

Let us remark that the uranium—iron expansion is stationary: thus, the expansion has to be described by
the stationary solution of the Wang Chang—Uhlenbeck equations (3) and by the stationary solution of the
Euler system (25) and (26) in the kinetic and fluid areas.

This coupling technique was previously used in [11] to couple the classical monospecies Boltzmann
equation with the classical monospecies Euler system for aerodynamic problems. It uses half flux conditions
to define the boundary condition at the kinetic—fluid interface. These conditions come from a kinetic in-
terpretation of the Euler equations and give formulas for the numerical fluxes at the kinetic—fluid interface
similar to those obtained with the kinetic schemes presented in the previous section: that is why we will use
the kinetic schemes to solve the multispecies Euler system in the fluid domain although we could a priori use
any good scheme designed for the multispecies Euler system apart from the meshes which have a frontier
with the kinetic—fluid interface.

In this section, we use the following definitions and notations (see the Fig. 2):

e The physical domain 2 C R® is constituted of the kinetic domain #° C R’ — where the mean free path is
important — and of the fluid domain # C R® — where the mean free path is tiny. We have ¥ = % U.%
and the kineticfluid interface .# is defined by .# = # N % . The kineticfluid coupling algorithm pro-
posed in this section supposed no overlapping between #" and %: thus, .# is a surface (or a line if
9 C R* and points if Z C R).
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Fig. 2. Structure of a plume created by evaporation.

e The boundary condition for the kinetic domain # at the interface .# is noted I'muig—kinetic(-#); con-
versely, for the fluid domain 7, it is noted I'ineic—nuia(-¥). These boundary conditions will be defined
below.

o A mesh of the kinetic domain #" having a frontier on the kinetic—fluid interface .# is noted X,,; this fron-
tier is noted .#,,.1/, and the fluid mesh having also this interface on its frontier is noted X,,;,. The dis-
tribution function f¥ in the mesh X,, is noted /¥ (x,, v).

e The uranium—iron emission surface is noted #_g. and the meshes having a frontier on % _g. are noted
X,+1, this frontier being noted Sy _pe4+1/2. Of course, we have Sy e g1/ C S vy-r C 0.

We recall that 7 is the subscript of the ith quantified energy level of the species k, see the notations at the
beginning of Section 2.

Let us note that the feature of the gas expansion in the AVLIS process is completely similar to the
feature of the gas expansion in the coma of a comet (cf. [9]) and to the feature of the gas expansion of a
volcanic jet when the atmosphere of the planet is rarefied (cf. [10]): thus, all the techniques and results of
this section can be applied to the problems exposed in [9,10].

4.1. Algorithm of the kinetic—fluid coupling

The algorithm is the following (we will explicitly define the boundary conditions @' kinetic(-#) and
Tkinetic—fuid (%) 1n the following section):

Initialisation of the fluid domain F and of the boundary condition I f1a—iineic(-#). We solve the pure
transport equations 0, fik +v-V, fl." = 0 in the domain & to obtain the stationary solution without collisions
in . Then, we initialize the fluid domain % which allows us to define the boundary condition
T fuid—kinetic (%) on the kinetic—fluid interface .#. This stage does not take a lot of CPU time since we do not
take into account the Wang Chang—Uhlenbeck operators (4) and (5).

First stage: computation of the kinetic domain . Knowing the boundary condition I'fuig_kinetic(-#), We
solve the Wang Chang—Uhlenbeck equations (3) in the kinetic domain .#". Then, we compute the boundary
condition Ikinetic—muia (-¥) at the interface .# for the fluid domain & after having done enough collisions to
obtain a stationary solution of the Wang Chang—Uhlenbeck equations in 7.

Second stage: computation of the fluid domain 7 . Knowing the boundary condition I'jeticfuia (-#) at the
kinetic—fluid interface .#, we solve the multispecies Euler system (25) and (26) with the kinetic scheme (50)
and (51) in the fluid domain . Then, we compute the new boundary condition I'fyig_xinetic(-#) at the in-
terface .# for the kinetic domain .#" when we have reached a stationary solution of the Euler system in % .

Third stage: convergence of the algorithm? We stop the algorithm if the global level of convergence is
enough; if not, we come back to the first stage.
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Let us note that the existence of a proof of the convergence of this algorithm is an open problem, even
for simplified kinetic models. Nevertheless, the numerical results obtained in Section 5 seem to state that
there is convergence.

4.2. Boundary condition at the kinetic—fluid interface

Since we solve the fluid limit of the Wang Chang—Uhlenbeck equations (3) in the fluid domain &, the
kinetic—fluid interface .# has to be placed in an area which is at the thermodynamic equilibrium which
means that the solution f* of the Wang Chang-Uhlenbeck equations in # without coupling has to be a
Maxwellian given by (13). Of course, since we do not know the solution of (3) in &, we have to choose a
priori the position of # in the domain & and, then, the position of the kinetic—fluid interface .#. Never-
theless, for AVLIS aplications, the domain 2 is fixed and we only modify the uranium-iron emission
condition on “y_g, (this emission condition will be defined in Sections 4.3 and 5.2) which does not change
to much the position of the fluid domain. Thus, for a given domain &, the position of .# can be chosen from
a first simulation without kinetic—fluid coupling. Of course, a best way would be to find a criterion which
would automatically estimate an a priori position of the kinetic—fluid interface .# at the beginning of the
kinetic—fluid algorithm.

To simplify the notations, we suppose in this section that the expansion is monodimensional in the x-
direction: thus, the kinetic—fluid interface .# is perpendicular to the x-direction and we only need to compute
the fluxes of the Euler system in the x-direction. Moreover, we write in this paper the boundary condition
only on the part of the interface .# which verifies n, > 0, where n is the normal on .# entering the fluid
domain &% (see Fig. 2). The projection on the x-direction of the microscopic velocity v is noted v,
(v = (vy,v,,0.) € R).

Of course, it is easy to extend the proposed boundary condition for any geometry and any shape of the
kinetic—fluid interface .# (the numerical results in the following part are obtained for an axisymmetrical
geometry and for an interface being parallel or perpendicular to the radial axis, see Fig. 4).

4.2.1. Boundary condition I fia—fineiic(-#) on i1z for the Wang Chang—Uhlenbeck equations

After the second stage of the coupling algorithm, we know the stationary solution of the Euler system
(25) and (26) and, thus, we know the mass fractions Y} of each species k, the density p, the velocity u and the
temperature 7 of the gas mixture in each fluid frontier mesh X,,,; — see Fig. 2 — at the time ¢, = +o0o (which
defines the last time step of the numerical resolution of the Euler system). Because of the kinetic inter-
pretation of the Euler system (25) and (26) (cf. Property 2.1), we now consider that the fluid domain % is an
uranium—iron emission source for the kinetic domain .#" through each interface .#,,,,/,. Thus, since n, is
supposed to be positive, the boundary condition I'jyig—kinetic(-#) on .#,,41/> for each species k are given by

f;k(.xm+1/2, v) = ﬂf(t,, = 400, Xput1,0) if v, <O, (52)
where /" is the Maxwellian defined by (13) that is to say by
Y, k (ve —u)* + 0> + 0% +
0 [ S R Epyeny G LGl e S S 4 (53)
me (2n(T/my)): Zx(T) T

with (p,u, T) = (p,u,T)

X=X,

., (we recall that u € R in that section).

4.2.2. Boundary condition I jipeiic—pia(-¥) on i1z for the Euler system
After the first stage of the coupling algorithm, we know the kinetic solution f¥(x,,v) of (3) in each
kinetic frontier mesh X,,. Thus, we can evaluate the macroscopic fluxes of mass S,jm 1) for each species k,

the macroscopic fluxes g, P of the mixture momentum and the macroscopic fluxes X | P of the mixture
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total energy which enter into the fluid mesh X,,,; through the interface .#,,,;/,. They are defined by the
formulas (let us recall that we suppose that n, > 0)

S/?,erl/Z = Z /// Omkvxf;‘k(xm7 U) dU
i Uy >
@Ll/z = Z /// Omkvif;."(xm,v) dv, (54)
ki Uy >

2
N1 = Z /// Omkvx(%+ Eff)f,-k(xm,v) dv
ki Uy >

Conversely, we know the value of the macroscopic fluxes which leave the fluid domain % at any time ¢, of
the numerical resolution of the Euler system since the distribution f*(#,,x,,..1,v) in the fluid mesh X, is the
Maxwellian .#*(t,,x,11,v) by hypothesis, Maxwellian given by (53). Then, using again the kinetic inter-
pretation of the multispecies Euler system (cf. Property 2.1), we deduce that the boundary condition
Tkinetic—tid (F) on £,.,1 /> associated to the kinetic scheme (50) and (51) — or to another good scheme — can
be given by

~ ~+t ~—.n

‘sk,m+1/2 = \sk‘m+1/2 + ‘skym+1/27

Pmi1/2 = Opiry + Ot/ (55)
Ros1p =Ry o +R,7) o,

where the negative half fluxes 3,7, ,. 0,V , and X 7, , are defined by (54) by replacing Ly >0 and
S¥(xm, v), respectively, with v, < 0 and M (ty, Xmi1,v). We easily see that the formulas giving \Sk /2> o P
and X 1), are those giving the negative half fluxes of the kinetic schemes described in the previous section,
the formulas are given in Appendix A.

Let us note that the boundary conditions (54) and (55) correspond to a Marshak condition which will be
explicitly used in the following section to take into account the Knudsen layer effects in the numerical
resolution of the multispecies Euler system. Moreover, we can see that the boundary condition (52) coupled
with the boundary conditions (54) and (55) makes conservative the coupling algorithm proposed at Section
4.1.

Finally, let us recall that the Wang Chang—Uhlenbeck equations (3) are solved with a Monte-Carlo
technique (cf. [5-8]). Then, to reduce the statistical noise in the computation of the quantities (54), we
compute the half fluxes during each iteration of the Monte-Carlo algorithm of the first stage of the coupling
algorithm by updating the statistic average of (54) as soon as a particle crosses the interface .#,,,1/, to go
into the fluid domain &; afterwards, this particle is killed. Of course, if the numerical method to solve the
Wang Channghlenbeck equations is a deterministic method, the quantities (54) is computed at the end of
the first stage of the coupling algorithm.

4.3. Boundary condition in the Knudsen Layer for the Euler system

To obtain the gas expansion in the AVLIS process, an electronic beam heats the (liquid) surface
Sy re C 0D (cf. Section 1 and Fig. 1). Afterwards, the uranium—iron gas mixture expands in the physical
domain & and condensates on 0Z. Due to the interaction of the source % y_g. with this electronic beam, the
distribution of each species £ on the liquid surface % y_g. is given by distribution functions qﬁf(v) which are
physical data coming from experimental studies and modelization hypothesis (see Section 5.2): this means
that the distribution functions of the evaporated particles are defined by ¢f.‘ (v) on Sy pe, Wwhen v-n >0,
where 7 is the normal on the source % _g. entering in Z.
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Moreover, we suppose that near the source & _r., the evaporation problem is monodimensional in the
direction orthogonal to the source Y y_r., direction which is supposed to be x: thus, Sy_r. is located by
x =0 as on Fig. 2.

4.3.1. Existence of a Knudsen layer and asymptotic matching

Near the surface %y_r., the mean free path is very tiny. Nevertheless, the gas mixture is not at the
thermodynamic equilibrium because the distribution function f*(z,x = 0,v, > 0) = ¢! (v) is imposed by the
boundary condition on the source /'y g, which implies that f*(¢,x = 0,v) # .#*(v): the important conse-
quence is that the Euler system (25) and (26) is not valid near the surface &y g (in other words, the formal
convergence (17) of Property 2.1 is not valid on %_g.). Nevertheless, because of the collisions, the gas
mixture recovers the thermodynamic equilibrium at a distance of some mean free paths from the surface
Fu-re and the Euler system becomes valid: the area between the surface .%y_g. and the place where the gas
mixture recovers the thermodynamic equilibrium is named Knudsen layer, see Fig. 2.

Thus, we can summarize the expansion of the gas mixture in the AVLIS process with (see also the feature
of the gas expansion in the coma of a comet in [9]):

Evaporation from y_p. C 02 — Knudsen layer — Fluid domain &% — Kinetic domain ¢
i.e., rarefied area — Condensation on 0%.

To optimize the gain in CPU time and in required computer memory due to the kinetic—fluid coupling, we
would like to take into account the effects of the Knudsen layer without solving the Wang Chang—Uh-
lenbeck equations in this layer but by asymptotically matching the fluid domain & on the surface & y_g.: it
can be done by using an ad hoc boundary condition on %y_g. for the multispecies Euler system.

More precisely, when the fluid domain % is asymptotically matched with the source & y_g., the multi-
species Euler system (25) and (26) is solved in the mesh X, although this mesh is inside the Knudsen layer
(let us recall that X,,; is a mesh of the physical domain & centered on x,,; which has a frontier
S UFegri2 C L ure, see Fig. 2): then, to take into account the effect of the Knudsen layer in the mesh X,
we have to find ad hoc values of the macroscopic fluxes Ji,41/2, ©g+12 and RNgi1» on the interface
S U_Feq+1/2 In the numerical scheme (50). It can be done by studying the half space problem which will help
us to define the Marshak condition.

4.3.2. The half space problem

To obtain this boundary condition, the best way is a priori to solve the monodimensional half space
problem which is also called Milne’s problem (a similar approach is proposed for semi-conductor problems
where it could also exist a Knudsen layer, see [12]). Here, we rescale the Knudsen layer by writing that x = 0
corresponds to the uranium—iron evaporation source #y_g. and that x = +oo corresponds to the exit of the
Knudsen layer, i.e., to the entry of the fluid domain % . The half space problem is the following:

Does it exist {Y;},, p, u and T which define the Maxwellians %f‘(v) given by (53) such that the problem

v vxfik(xv v) = Qf‘(ﬂ
For all (i,k) : fEx =0,0, > 0) = ¢F(v), (56)
fik(x = +00,0) = ’%f(v)x:Jroo
is well posed.

Let us suppose that (56) is well posed: then, it would be possible to define a boundary condition on x = 0
for the multispecies Euler system (25) and (26) by imposing ({¥;},,p,u,T),_, with the moments of
%f(v)x: 1o given by the resolution of (56): this would correspond to the asymptotic matching of the fluid
domain % on the surface % y_re.
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In the case of a linearized classical monospecies Boltzmann operator, it is possible to obtain some
theoretical results on the existence of a solution of (56). This solution is parametrized by the Mach number
at x = +oo which has to be less than one (cf. [25]).

Some numerical experiments performed in [26] have proven the existence of a solution parametrized also
by the Mach number at x = +oco for a monospecies BGK operator and when the boundary condition
f(x=0,v, > 0) = ¢(v) is a classical centered Maxwellian .# (v), Mach number which has to be less or equal
than one.

For monospecies Boltzmann or BGK operators, a very simplified analytical approach is proposed in
[27,28] when the boundary condition at x = 0 is a centered Maxwellian (the idea is to study (56) in the
classical monospecies case by supposing that 3 > 0 such that f(x = 0,v, < 0) = p.#(v),_. ., and by taking
the moments of (56)): the analytical formulas giving p, u and T at x = +oo are again parametrized by the
Mach number at x = +o0o which is also supposed to be less than or equal to one from physical consider-
ations. The numerical results are very similar to those proposed in [26]. Let us note that these formulas are
obtained for any y €]1,3]; in [26], the results are obtained for a gas with y = 5/3.

It is important to note that all these previous theoretical or numerical results can not be applied in our
case for three reasons:

e the Wang Chang—Uhlenbeck operators (3) are not classical monospecies Boltzmann operators or BGK
operators;

¢ in the case of a classical monospecies Boltzmann operator, the Mach number at x = 4o is a free param-
eter (which has to be subsonic). In some situation, it is possible to show that the exit of the Knudsen
layer has to be sonic: then, the exit of the Knudsen layer is completely known; but, in other cases
met in AVLIS expansions, it is impossible to know a priori the Mach number at the exit of the Knudsen
layer (cf. [21]);

e the boundary condition (l)f(v) on the source ¥ y_g. is not a Maxwellian because of the heating electronic
beam (one of the uranium energy metastable level is excited, see Section 5.2): this makes much more dif-
ficult to obtain analytical results similar to those of [27,28].

Thus, we have to find another way to obtain the boundary condition for the multispecies Euler system at
the source % y_re.

4.3.3. The Marshak condition for the Euler system coupled with a kinetic scheme

The Marshak condition was proposed in Los Alamos around the year 1940 for radiative transfer and
neutron transport problems. Then, it was extended and justified in [24] to the gas dynamics equations to
find boundary conditions for the asymptotic matching on a wall of the Navier—Stokes system and, then, to
give slip boundary conditions: this gives Robin boundary conditions.

The Marshak condition. If we suppose that we can apply at x = 0 a Dirichlet condition in the case of the
Euler system, the Marshak condition simply means that ({¥;},,p,u,T),_, is solution of the non-linear
problem

Z///>Omkvx i deU_Z///L>OmkUV v)dv forall k € {1,...,k},
///b\>omk“2/” xod”—Z///womkvid-‘(v)dv, (57)
///L\>0mkvx( +e>/%k( rOdu—z:///Womkuv( —|—e)q§()d

where the Maxwellian ,/%f.‘(v)x:o is defined by (53) with ({¥: },, 0,4, T) = ({Yi }4, p,u, T) _, (We recall that i is
the ith electronic metastable energy level of the species k).
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Coupling of the Marshak condition (57) with a kinetic scheme. We see that the difficulty is now to solve the
non-linear problem (57); moreover, it is not obvious that a Dirichlet condition is a good boundary con-
dition for the Euler system at the continuous level. To avoid these difficulties at the discrete level, we
construct a ghost cell on the source #y_pe 41> defined by the solution of (57), and we apply the kinetic
decomposition of the macroscopic fluxes on Fy geq+1/2 to obtain the (explicit) macroscopic numerical
fluxes used to asymptotically match the fluid domain on the uranium-iron source ¥y p.. Then,
(S 9 N) 4 s> used in the numerical scheme (50) and (51) is given by

esource

g2 = Jigrin + S
P12 = Ogrtys T 94120 (58)
NZ+1 /2 = N;Tlrfg + Nq+1 /2

with

~SOUT k
\515(0;+Lle/2 Z / / / . mkvxd)i,qﬂ/z(v) dv
i Uy >
k
p;cf]r?; — Z / / / . mkvﬁqﬁf}qﬂ/z(v) le, (59)
ki Uy >
source Uz k k
/2 = Z . M| & t€ ¢iﬁq+]/2(v) dv
ki Uy >

and with

,,,1,
kq+l/2 § /// mkvx tnaxq+l> )d7
vy <0

2
q+l/2 //[<Omkv % tnaqurl; dU—Zpkq_H/z» (6())
n,— U — n,—
Nl = Z ///<0mkvx<§—&—eﬂ‘)/%f.‘(tn,xqﬂ,v)du:z:quH/2
ki Ux

We can see that, due to the kinetic decomposition of the macroscopic fluxes, we do not have to solve the
non-linear problem (57) and that this boundary condition is similar to the boundary condition on the
kinetic—fluid interface .# defined by (54) and (55).

The formulas giving (3, p, N)Z;qu] /2 in (60) and considered as functions of (s, u,Pk,Ek); ., are written in
Appendix A.

The formulas giving (59) depend on the value of the distribution functions d)f.‘(v) which, in the AVLIS
process, modelize the interaction between the source &y g. and the heating electronic beam. If qu(v) are
Maxwellians defined by (53), the formulas are again given in Appendix A.

Thus, the Marshak condition allows us to a priori take into account any emission condition qﬁf.‘(v),
without postulating the value of the Mach number at the exit of the Knudsen layer and without doing any
complicated analytical calculus: this technique is very pragmatic but gives very good numerical results.

For example, when the mesh size of the fluid domain is of the order of the mean free path, the mac-
roscopic quantities found in the Knudsen layer by solving the Euler system with the asymptotic matching
are almost equal to the macroscopic quantities given by the kinetic model; nevertheless, for a mesh size
bigger than the mean free path, the results are of course less precise but are still very good, see the following
part.
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5. Application to the simulation of the Atomic Vapor Laser Isotopic Separation process

In this section, we apply the kinetic—fluid coupling technique proposed in the previous sections to
simulate the expansion of the uranium—iron gas mixture in the AVLIS process, process which is described
in Section 1 of this paper. The geometry is supposed to be axisymmetrical around the X-axis, the radial axis
being noted R. Fig. 3 defines the physical domain £ in that geometry.

Let us note that the Wang Chang—Uhlenbeck equations (3) are solved with the Monte-Carlo code
presented in [6,7] whose algorithm is based on the Particle Test Monte-Carlo (PTMC) method and not on a
classical Bird type method. Nevertheless, the choice of the Monte-Carlo technique used to solve the Wang
Chang—Uhlenbeck equations does not interfere with the kinetic—fluid algorithm (more exactly, the
boundary conditions (52), (53), (54) and (55) at the kinetic—fluid interface are independent of the Monte-
Carlo algorithm) except for the gain in CPU time and in computer memory (see below).

At last, let us remark that the proposed kinetic—fluid coupling algorithm was tested with success in [21] in
the case of a monospecies perfect gas, this simple configuration allowing to compare for example the
proposed asymptotic matching in the Knudsen layer (see Section 4.3.3) with the asymptotic matching
deduced from the numerical and analytical results of [26-28] (see also Section 4.3.2).
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5.1. The crater and the fluid domain F

Fig. 4 is a zoom of the area where the uranium—iron is evaporated (see also Fig. 3): this area includes a
crater; the boundary surface of this crater defines the source % y_g.. This shape is due to the fact that the
uranium-iron source is excavated by the impact of the electronic beam during the evaporation. The source
S U-re, the Knudsen layer and the fluid domain % are included in the domain described in Fig. 4 (see also
the simplified Fig. 2).

5.2. Emission conditions on the source % y_r
We suppose that the temperature 7; on the surface %y g, is not uniform and divides the source ¥y g on
three areas (cf. Fig. 4):
for r<R;: T,(r)=3400 K (R, =0.85107% m);

for Ry <r<R,: T,(r)=3200K (R, =1.71072m); (61)
the last part of Sy g is at the temperature T,(r) = 3000 K.
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Fig. 4. Crater and kinetic—fluid interface.
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This non-uniform temperature on % _g. is due to the presence of the electronic beam which only impacts
the center of the crater (defined by » < R;). Knowing these temperatures, we define the emission distribution
functions ¢’ (v) with:

For the uranium (k = **U):

¢1(v) = C5(T3) - né(T:) - exp {— ;m 85 exp < - 7’31<k>>

if i=1or2andforall»>0; orif i=3and r > Ry; (62a)
. - ‘ mv? . me\ .
¢; (v) = G5 (L, T) - ng(T) - exp “ary | sl - 7o) ifi=3and r<Ry. (62b)
’ s r *

The temperature 7, in (62b) will be defined in (64). Let us note that we can neglect the differences between
the atomic masses and between the metastable energy levels of 2*U and ?®¥U for the simulation of the
uranium gas expansion.

For the iron (k = Fe):

P (v) = C(T,) - n*(T,) - ex oo ] kex _me if i=1 or 2 and for all » > 0 (63)
AT SR T | TP T L) -7

The constants C}'¢ in (62a)—(63) are normalization constants easily deduced from (13). The density n*(7;) in
(62a) and (62b) is the vapor saturation density of the uranium on the surface y . at the temperature 7,(r):
it is given by a formula of the type Clausius-Clapeyron (see [29]); to simplify, the iron density #*(T;) in (63)
is supposed to be equal to 11.25% of the uranium density #*(7,(r <R,)) in (62b).

Knowing the emission conditions (61)—(63), we can easily estimate the local mean free path of the gas
mixture on the source ¥y _g,: it is between 107> and 10~* m which induces a tiny local Knudsen number Kn
(Kn € [1073,1072]). Moreover, we also deduce the evaporation rate which is equal to 3.7 kg/h for the
uranium and to 0.2 kg/h for the iron.

The value of degenerescencies g¥ and of metastable energy levels defined by ef = milvf‘ (my, is the atomic
mass and 7 is the Planck’s constant: thus, v¥ is a frequency) are the followings: (

For the uranium:

gh =13, Vi =0,
gi=11, and ¢ =620 cm’,
g =514 Vi =8338 cm .

For the iron:

g =9 vi =0,
{gg _y nd {vg — 1466 cm~".

In (62a2)—(63), we only consider three metastable levels for the uranium and two metastable levels for the
iron although the electronic structure of the uranium and of the iron is much more complicated: the last
level (and its degenerescence) is an ad hoc average of the other metastable levels. Indeed, it is impossible to
treat all the metastable levels for evident computer reasons; moreover, one of the most important infor-
mations that we want to know from the simulations is the number of uranium atoms at the second level
(v = 620 cm™!) compared to the number of uranium atoms at the first level which is the fundamental level
(v = 0), this quantity being also deduced from experimental measures using laser absorption measurements
(cf. Fig. 3): thus, we do not really need to know in detail the distribution functions of the uranium from the
third metastable electronic energy level.
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Moreover, the temperature 7, in (62b) modelizes the excitation of the uranium atoms because of the
electronic beam which heats the center of the source #y_g. (the center is defined in (61) by » < R;). This
temperature is given by

T.=C.-T,(r<Ry), (64)

where C, is an excitation parameter deduced from experimental studies (let us recall that the temperature
Ti(r) of the source ¥y r. is defined by (61)). Here, we choose C, = 1.7 (we suppose that the iron is not
excited by the electronic beam).

Let us note that the relations (61)—(64) are a simplified model which hides the difficulty to have an exact
theoretical model of the interaction of the electronic beam with the source .%y_g..

5.3. Numerical results

In this section, we compare the results obtained without kinetic—fluid coupling and the results obtained
with the kinetic—fluid coupling algorithm presented in the previous part. We recall that the Wang Chang—
Uhlenbeck equations (3) are solved with a Monte-Carlo technique.

5.3.1. Identical meshes with and without kinetic—fluid coupling

For Figs. 5-12, the physical mesh of & is defined in Figs. 3 and 4, and the size of the mesh is based on the
local mean free path which is a priori estimated by using the emission conditions on the source % y_g.
Below, we will take a bigger mesh in the fluid domain % for the kinetic—fluid coupling algorithm (cf. Figs.
13-195).

On Figs. 5-8, we can see the results with or without kinetic—fluid coupling in the crater for the axial and
radial velocities of the gas mixture.
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Fig. 5. Radial velocity of the uranium—iron mixture in and above the crater without kinetic—fluid coupling.
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Fig. 6. Axial velocity of the uranium-iron mixture in and above the crater without kinetic—fluid coupling.
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Fig. 7. Radial velocity of the uranium—iron mixture in and above the crater with kinetic—fluid coupling.
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Fig. 8. Axial velocity of the uranium-iron mixture in and above the crater with kinetic—fluid coupling.
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Fig. 9. Uranium density in the crater at » = 5 x 107> m with and without kinetic-fluid coupling.

Fig. 9 shows the uranium density with and without kinetic—fluid coupling at the radius » = 5 x 1073 m
(see Fig. 4) in the crater; Fig. 10 shows the uranium temperatures 7, and 7, without kinetic—fluid coupling
and the mixture temperature 7 with kinetic—fluid coupling (and, thus, given by the Euler system) at the
same radius in the crater.

Let us remark that Fig. 10 shows that the exit of the Knudsen layer is at about x = —8 x 10~ m. It exists
also a (bidimensional) Knudsen layer parallel to the X-axis near the frontier of the crater which is at the
temperature of 3000 K (see Fig. 4) but we do not have tested yet the asymptotic matching of the fluid
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Fig. 10. Uranium temperature in the crater at » = 5 x 10~ m with and without kinetic—fluid coupling.
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Fig. 11. Uranium and iron densities in the rarefied area (cf. also Fig. 3) with and without kinetic—fluid coupling.

domain on that frontier (see the kinetic—fluid interface on Fig. 4). Moreover, let us note that this frontier is
more a condensation surface than an evaporation source because of the direction of trajectories of the gas
mixture (see Fig. 5 for example).

Fig. 11 shows the uranium and iron densities at a distance of 0.5 m from the crater and, thus, in the
rarefied area (see also Fig. 3).

Fig. 12 shows the population ratio of uranium atoms at the second level with and without kinetic—fluid
coupling at the heights of 0.12 and of 0.35 m from the crater where laser absorption measurements are
performed (see also Fig. 3). Let us note that this population ratio is the number of uranium atoms at the
second level v = 620 cm~! compared to the number of uranium atoms at the fundamental level v = 0.

All these results show that the kinetic—fluid coupling algorithm gives very good results since they are
quasi similar to those obtained without kinetic—fluid coupling. Moreover, the Marshak conditions used to
asymptotically match the fluid domain on the uranium—iron source allows to almost obtain the real
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Fig. 12. Uranium population ratio where it is done laser absorption measurements (cf. Fig. 3) with and without kinetic—fluid coupling.
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Fig. 13. Uranium density in the crater at » = 5 x 10~* m with and without kinetic—fluid coupling, and with a coarse mesh in the Euler
domain.

macroscopic quantities in the Knudsen layer (when the mesh in the fluid domain is not modified, see also
below) although we solve the Euler system in this layer: this result is notable, all the more reason we take into
account a non-Maxwellian boundary condition (62b) at the part of the uranium source ¥ y_g. wWhich is
impacted by the electronic beam.

5.3.2. Coarse mesh in the fluid domain with kinetic—fluid coupling

The size of a mesh in the crater domain is now much more important than the mean free path: in Fig. 4,
the number of rectangular meshes is equal to 130 x 25; for the present numerical test, this number is of
50 x 25 (i.e., there are now many less meshes in the crater in the X-direction). Figs. 13 and 14 show that we
do not obtain the macroscopic quantities in the Knudsen layer with the accuracy of the results presented in
the previous Figs. 9 and 10. But, we almost recover all the macroscopic quantities near the exit of the
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Fig. 14. Uranium temperature in the crater at » = 5 x 10~3 m with and without kinetic—fluid coupling, and with a coarse mesh in the
Euler domain.
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Fig. 15. Uranium population ratio where it is done laser absorption measurements (cf. Fig. 3) with and without kinetic—fluid coupling,
and with a coarse mesh in the Euler domain.

Knudsen layer, i.e., at about x = —8 x 10~ m. Moreover, we can see that the population ratio of uranium
atoms at the second level at the heights of 0.12 and 0.35 m is still accurate: compare Fig. 15 with Fig. 12.
This shows that the Marshak condition is a robust and accurate boundary condition, at least for our
problem.

5.3.3. Gain in CPU time and in computer memory

By solving the Euler system in the dense area and by asymptotically matching the Euler domain on the
uranium-iron source, we have divided by about 3 the CPU time. Moreover, the gain in computer memory
is of about 30%: indeed, since we do not solve the Wang Chang—Uhlenbeck equations in the fluid domain,
the number of particles used in the Monte-Carlo simulation is very less important.
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Let us recall that the Monte-Carlo algorithm in the kinetic domain is based on the PTMC method (see
[6,7] and the references herein). This Monte-Carlo algorithm is well adapted to stationary situations where
there are very different mean free paths, a classical Bird algorithm having greater difficulties to converge in
the high density area in AVLIS applications (although it is possible to improve the efficiency of the Bird
algorithm with time subcycling as in [10]). This is due to the fact that the PTMC algorithm does not give the
transcient regime but converges only to the stationary solution by using an ergodic hypothesis. Thus, the
gain in CPU time and in computer memory would be more important if the Monte-Carlo method was a
classical Bird type technique.

5.3.4. Two examples of physical informations which can be obtained for the evaporation AVLIS process from
the kinetic—fluid coupling algorithm with a reasonable CPU time

Example 1: effect of the iron on the uranium metastable levels. Fig. 16 shows that the population ratio of
uranium atoms at the second level is diminished when there are iron atoms in the uranium gas expansion.
This phenomena is well known in the AVLIS process and is directly due to the uranium—iron collisions
which increase the metastable energy transfers. Thus, the kinetic—fluid coupling algorithm allows us to
study the influence of the value of the iron density n*(7;) in the source, and used in (63), on the population
ratio of uranium atoms at the second level by doing a lot of simulations with a reasonable CPU time and
without loss of accuracy.

Example 2: effect of the modelling of the interaction of the electronic beam with the uranium source. Instead
of using the relations (62a) and (62b) to modelize the interaction of the electronic beam with the uranium
atoms of the source, we can use the boundary condition

2 k
Koo\ oste ok ) o mr _ g
810 = 5T - ah(T)-exp |~ s | st (=)

if i=1,2or 3 and for all » >0, (65)

where the temperature 7, in (65) is again defined by (64): we suppose here that the electrons impact all the
surface S y_g. of the crater because of multiple collisions. Fig. 17 shows that the population ratio of
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Fig. 16. Uranium population ratio where it is done laser absorption measurements (cf. Fig. 3) with kinetic—fluid coupling, and with or
without iron in the uranium source.
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Fig. 17. Uranium population ratio where it is done laser absorption measurements (cf. Fig. 3) with kinetic—fluid coupling, and with
different uranium emission laws on the uranium source.

uranium atoms at the second level at the heights x = 0.12 and x = 0.35 m is now more important. Thus, the
kinetic—fluid coupling algorithm can also help to obtain a good modeling of the interaction of the electronic
beam with the uranium source with a reasonable CPU time.

Remark. Application of the kinetic—fluid coupling algorithm to the study of the coma of a comet.

Because of the similarity between the gas expansion in the AVLIS process and the gas expansion in the
coma of a comet (cf. [9]), phenomena which take place in the gas dynamics of a comet could be studied with
numerical simulations using a similar kinetic—fluid coupling algorithm to diminish the CPU time and the
required computer memory (we could do a similar remark for the simulation of a volcanic jet in a rarefied
atmosphere as on the Jupiter’s moon lo: cf. [10]). For example, in the AVLIS process, we find that the
number of light species —i.e., the iron — compared to the number of heavy species — i.e., the uranium — is less
important near the X-axis (this phenomena can be deduced from Fig. 11): the uranium expansion is more
collimated than the iron expansion. This phenomena, due to a high pressure gradient in the radial direction,
exists also in the coma of a comet and is called baro-diffusive effect (see [9]: in that case, the light species are
H and OH, and the heavy species is H,O). Let us note that in the macroscopic diffusive flux (48), the baro-
diffusive effect is represented by the term (1 — ) C, %L,

6. Conclusion

We have extended to the semi-classical multispecies case the kinetic—fluid coupling technique firstly
proposed in [11] and we have applied this technique to the simulation of the gas expansion in the isotopic
separation AVLIS process. This technique implies that the algorithm is conservative and that there is no
overlapping between the kinetic and fluid domains.

From this point of view, firstly, we have proposed a kinetic scheme for the resolution of the multispecies
Euler system closed with a non-classical state equation. By extending to the multispecies case the relaxation
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schemes theory presented in [13], we have proposed an entropic result for this multispecies kinetic scheme,
result already proposed by [16] with an other approach. Secondly, we have proposed to use a Marshak
condition for the asymptotic matching of the fluid domain on the evaporation source to take into account
the effect of the Knudsen layer in the resolution of the Euler system.

The numerical results show an excellent agreement between the results obtained with and without ki-
netic—fluid coupling and show that the Marshak condition works very well for the asymptotic matching.

At last, the CPU time was divided by about 3 and the gain in computer memory was of 30% by using the
kinetic—fluid coupling algorithm for the proposed numerical tests, and without any loss of accuracy: this
should help the experimenters to well understand the gas expansion in the evaporation AVLIS process by
doing many numerical simulations with a moderate CPU time. Moreover, the general ideas of the kinetic—
fluid coupling algorithm presented in that paper could be applied for other strong evaporation problems as
those studied in [9,10].
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Appendix A. Kinetic fluxes for the Euler system

The kinetic fluxes of the kinetic scheme (33) are defined by

3 3\ 3\~
© =l + 1| e
R i+1/2 R i+1/2 R i+1/2

And, by calculating (37) and (38) with the monodimensional Maxwellian (39), we find the following nu-
merical half fluxes:
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and
_ P Uiy _ 1 P _
/27 T %g(_xm/z) - E p_—Hg"(_Xm/z)(PiHEM +Pi1/2),
where
.
Xiv1/2 = r‘—*zp./pj
Uit

Xy = — ———,
ik iV 2Pi+1/Pi+1

F (x) = exp(—x*) — v/nxerfc(x)
and
9(x) = erfc(x),

erfc(x) being the complementary error function defined by

erfc(x) = \/iﬁ /+Oo exp(—y*) dy.
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